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Abstract—This article compares the performance of two en-
ergy storage technologies, namely supercapacitors and Li-ion
batteries, in the context of Direct Wave Energy Converters
(DWEC). Both the sizing and management of an Energy Storage
System (ESS) are described, and the SEAREV project has been
used as an example. The main objective is to compare the two
technologies on the basis of their life cycle cost. The ESS is
necessary for grid integration due to the flicker constraint, which
is not being satisfied without storage. The rule-based energy
management approach introduced herein depends on the State
of Energy of this ESS as well as the power produced by the
DWEC. This management strategy has been optimized for each
size in order to reduce aging speed while strictly respecting
the flicker criterion. The final design is expected to minimize
total system cost, i.e. the sum of investment cost and operating
cost (losses and replacements). The aging models applied take
into account temperature and cycling effect in order to estimate
this replacement cost. Such an optimization routine is especially
critical for offshore systems like Direct Wave Energy Converters,
which require both cost reduction and high reliability.

Index Terms—Supercapacitors, Li-ion batteries, Electrical En-
ergy Storage System, Life Cycle Cost, Aging, Design optimiza-
tion, Life Estimation, Power Smoothing, , Direct Wave Energy
Converter, Grid Integration, Energy Quality, Flicker.

I. INTRODUCTION

The integration to the grid is one of the keys to the
development of renewable sources, as Direct Wave Energy
Converters (DWEC). In particular, flicker has been identified
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as an important element for wind turbines [1] and wave energy
converters [2]–[4]. Indeed, the combination of the weak grid
(because of the near-shore distribution grid) and fluctuations
in production can cause significant flicker non-compliance.
Smoothing the production with an Energy Storage System
(ESS) is one way to solve this grid integration problem.
The wave energy converter considered in this study is the
SEAREV [5] (cf. Figure 1). The instantaneous produced power
by a single unit is between 0 and 1.1 MW with an average
production (over a year) of 126 kW.
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Fig. 1. Smoothing the power produced by a Wave Energy Converter thanks
to an Energy Storage System for the purpose of satisfying a flicker constraint

Supercapacitors can hold a large number of cycles and
offer a reduced cost per unit of power [4]. That led to
consider this solution [4] [6] for the ESS. In order to reduce
costs, a comparison is drawn between these devices and other
technologies, more specifically the high-power Li-ion battery,
which is definitely capable of competing with a supercapacitor
in terms of power cycling or cost per unit of power, for
examples with Lithium Titanate technology.

The purpose of this study therefore is to minimize the
ESS cost while ensuring that the energy quality constraint
has been satisfied (see Fig. 2). Other impacts, as for example
environmental impact, like greenhouse gas emission or energy
consumption, could also be compared, but are not a part of
this study. Therefore, the energy management and the sizing
will be optimized under a non-linear constraint on the power
injected into the grid.

Past uses of a life cycle cost analysis as part of a sizing



PProd(t)

flicker
constraint

Storage.energy
rating

ELoss

Nreplace

PSto(t)

dSoA/dt.>.0

Replacement

IRMS ; V ; θcase
flickermeter

Rule-based
control

Energy
Management

Electric &
Thermal

Aging

Life-Cycle Cost
Analysis

€ Total.cost
(Investement,.
replacement.
&.losses)SoC ; θcase

or

Cost.
parameters

θamb.

min.
aging
speed

or

Fig. 2. Life cycle cost analysis applied to storage capacity sizing using
electric, thermal and aging models with an optimized management strategy

process are limited [6]–[8]. The life cycle analysis conducted
for this problem with supercapacitors under similar hypotheses
has already been presented in [4]. A Li-ion battery model has
been added to the present analysis in order to compare the two
technologies for this specific application.

Comparisons between technologies are widespread and of-
ten focus on the cost of these systems [9]–[12], though few
actually perform a life cycle cost analysis [13], [14]. However,
such an analysis proves to be critical, especially for stationary
applications; to the best of our knowledge, no previous work
has taken advanced aging models into account.

II. MODELS AND HYPOTHESES

A. Rule-based Energy Management

The complete system with all its power flows is illustrated
in Figure 1.

The effects of losses on the dynamic behavior of the system
are neglected because the dynamic behavior does not change
significantly by not considering them. But, losses are not
completely neglected; they are indeed part of the operating
cost. With this assumption, the ESS is considered as a pure
integrator. This assumption is often used for this type of
problems, and can be summarized by the following equations:

dESto

dt
= PSto(t) (1)

PSto(t) = PProd(t)− PGrid(t) (2)

with ESto the stored energy in the ESS, PSto the power in
the ESS, PProd the power produced by the DWEC, and PGrid

the power injected into the grid.
The energy management steps discussed herein are part

of a rule-based control strategy with adjustment parameters
that allows for optimizing these parameters (hence, optimizing
process management) based on both the constraints and costs.
The rule is that the stored power linearly depends both on the
power produced and on the state of energy of the ESS. This
type of law is inspired by fuzzy logic management [15]–[17]:

PSto(t) = α
(
PProd(t)− PMin

)
− ESto(t)− EMin

τ
(3)

Three adjustment parameters are found in this management
law, i.e.: EMin, τ and α, which respectively denote the
minimum stored energy, the storage time constant, and a ratio
(bounded between 0 and 1) that is proportional to the share
of smoothed power within the power injected into the grid.
PMin corresponds to the minimum instantaneous power (here
0 MW). This management rule is illustrated in Figure 3. For
each sizing, the management parameters are chosen so as to
minimize the speed of aging.
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Fig. 3. Rule-based management strategy: stored power vs. the power produced
by the Wave Energy Converter and the ESS State of Energy (α is a parameter
bounded between 0 and 1)

The Energy Storage System is necessary to satisfy the
flicker constraint for some sea-states. The maximum allowed
long-term flicker severity value Plt for a wave farm is 0.25,
according to French rules for a MV grid (distribution medium-
voltage grid between 1 kV and 50 kV, typically 20 kV).

The total long-term flicker severity value Plt for a farm with
Ni converters and the same individual long-term severity Plti

is assumed to equal: Plt =
√
Ni × Plti. The studied situation

is a farm of 20 productive units; then, the limit for each unit
would be: 0.25/

√
20 = 0.056. This constraint will be used

to size the individual Energy Storage System (ESS), which is
controlled individually.

Let’s also assume that the grid has a short-circuit apparent
power of 50 MVA and a grid impedance angle of 60◦, both of
which are values for a weak medium-voltage grid, typical from
some near-shore or island grid. In order to partially compen-
sate voltage fluctuation, the grid reactive power production is
set to: QGrid = −0.2 PGrid, the maximum authorized value.

An example of two management parameters that respect
flicker constraint are in Fig. 4. We notice that the ESS is used
more in power when α is big and more in energy when τ is
big.

B. Supercapacitors and Li-ion batteries electrical and thermal
model

For both technologies, a reference element is used: a
Maxwell cell with a 3000 Farads capacitance and a 2.7 volt
rated voltage [18] for the supercapacitors and an Altairnano
battery (nanostructured lithium-titanate for the negative elec-
trode and lithium-manganese oxide for the positive electrode)
with a 60 Ampere-hour capacity and a 24 volt rated voltage
[19] for Li-ion batteries.
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Fig. 4. Smoothing of Wave Energy Converter power production with two
parameter pairs (α, τ ) that satisfy the flicker constraint

The electrical model chosen to represent a supercapacitor
is the series connection of a capacitance C (3000 F) and
an Equivalent Series Resistance ESR (0.29 mΩ). We model
the Li-ion battery by a voltage source E (24 V) and an
internal resistance ESR (3.9 mΩ) in series. Both model are
oversimplified, unless the State-of-Energy of the ESS stay
relatively unchanged. We will make that hypothesis and try
to confirm it with the results.

The series and parallel connections of these elements allow
adjusting the rated voltage and total size of the ESS. All cells
are assumed to be identical and to endure the same conditions.
We can notice that balancing circuits are typically used to
compensate voltage deviation between the cells, and thus help
to make this assumption.

The self-heating effect is very important because the degra-
dation rate accelerates exponentially with respect to temper-
ature, as we will see later. The thermal time constant of the
cells are considered to be high enough relative to the waves
period (typically ten seconds) so as to neglect case temperature
variations. In order to determine the case temperature of the
elements, we thus introduce a simple static thermal model:

θc = θa +Rthca ESR× I(t)2 (4)

where θc and θa are the case and the ambient temperatures
(the latter is assumed to be constant and equal to 25 ◦C),
Rthca the thermal case-ambient resistance of the element, and
I the current flowing through the component. The operator
x represents the average of a quantity over a cycle duration.
Thus, during a cycle, the case temperature θc is considered
as a constant. The thermal resistance Rthca is 3.2 K/W for
supercapacitors and 0.28 K/W for batteries (hypothesis: heat
transfer coefficient is equal to 10 W/(m2K)).

C. Supercapacitors and batteries aging models

A state variable SoA serves to quantify the State-of-Aging
for both aging models; its use is similar to the State-of-Health
SoH parameter found in some battery models (SoA = 1 −
SoH). The value is initially 0 and reaches 1 at the end of the
device lifetime.

The supercapacitor aging model has been fully described
in [4]. Aging variation depends on: the case temperature θc,
voltage across the cell V , and the root mean square current
though the cell IRMS :

δSoA =
1

T ref
life

× exp

(
θc − θrefc

θ0

)

×

exp

(
V − V ref

V0

)
+K


× exp

(
kRMS

IRMS

C

)
× δt

(5)

where T ref
life, θ0, θrefc , V0, V ref , K and kRMS are aging

parameters described in [4] and given in Table I. τfilter RMS

corresponds to the time constant used to compute the RMS-
current IRMS . The temporal resolution used here to compute
the average aging speed is 0.1 s. δt is the duration of the sea-
state considered.

TABLE I
PARAMETERS OF THE SUPERCAPACITORS AGING MODEL

θ0 11 K
V0 130 mV
K 29 ×10−3

T ref
life

1470 h

V ref 2.7 V
θref 65 ◦C
kRMS 68 s.V−1

τfilter RMS 45 s
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Fig. 5. Cycling model of Altairnano Lithium nanostructured lithium-titanate
batteries [20]

The Li-ion battery aging model is a cycling model based
on manufacturers data (see Fig. 5) that take into account both



cycling and calendar aging.

δSoA =

 N∑
i=1

DoD2
i

2 Nref
cycles

+
δt

T ref
calendar


× exp

(
θc − θrefc

θ0

) (6)

where N is the total number of half-cycles during a sea-
state with a duration of δt, i is the index of the half-cycle
(a charge or a discharge) and DoDi is the Depth of Discharge
or Charge during the half-cycle i, as a ratio of the energy
fluctuation over the rated energy. The parameters Nref

cycles, θ0,
θrefc and T ref

calendar are given in Table II. A rainflow-counting
algorithm is used to determine all half-cycles. It transforms
time series into various cycles in order to apply cycling aging
models in the case of complex loading [21]. This algorithm
has been described in detail in the relevant standard [22], and
a MATLAB implementation is given in [23].

TABLE II
PARAMETERS OF THE LI-ION BATTERY AGING MODEL

Nref
cycles

16 000

T ref
calendar

25 years
θrefc 25 ◦C
θ0 22 K

III. SIZING MINIMIZING LIFE CYCLE COST

A. Life Cycle Cost Analysis

The goal of this model is to determine the sizing that
minimizes total lifetime cost Clife; this cost takes into account
the price of losses using a feed-in tariff set at cFeed−in =
0.15e/kWh, with the initial investment costing cEnergy =
15 ke/kWh for the supercapacitors and cEnergy = 300e/kWh
for power Li-ion batteries (Lithium Iron Phosphate price with
some suppliers). The replacement cost considers just the price
of the new storage system. So, this model does not take into
account either the intervention cost or production losses during
failure, both of which can be considerable in an offshore
system.

Clife = cEnergy ERated

+ cEnergy Nreplace ERated

+ cFeed−in < Ploss > ∆t

(7)

where ∆t is the lifetime of the DWEC system, taken at 20
years and Nreplace is the number of replacements and is an
integer, its value comes from the relation:

Nreplace =

⌊∫ ∆t

0

dSoA

dt
dt

⌋
(8)

where bxc is the floor function, that is the largest integer not
greater than x and dSoA/dt is the aging speed averaged over
a sea-state.

Results are shown in Figure 6. The investment cost is pro-
portional to the capacity, the losses are inversely proportional
to the capacity and the replacement are many with small size
due to large cycles and high self-heating. The cost are similar
despite the major differences in capacity between the two
technologies because the application demands a lot of power
compared to the need of energy.

The life cycle cost discontinuity comes from the number of
replacements, which is an integer. We can see that there is a
big problem of robustness because a little change in capacity
can have a great impact on life cycle cost.
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Fig. 6. Life cycle cost as a function of energy capacity for an ambient
temperature of 25 ◦C

B. Considering aging model uncertainty

The aging models are not sufficiently accurate to make
sure prediction about replacement. That is why we want to
take into account the uncertainty concerning the aging model
and hypotheses that have impact on aging, such as a constant
ambient temperature. It is usual during a model fitting to have
experiments that differ from model within a factor 2, and it is
not rare to find a factor 3.

That is why we will now consider that the number of
replacement is a stochastic variable Nstoch.

replace with a multi-
plicative factor ex that follows a normal distribution:

Nstoch.
replace(x) =

⌊∫ ∆t

0

ex
dSoA

dt
dt

⌋
(9)

with bxc, the floor function, x, a stochastic variable that follow
a normal distribution φ (x) whose mean value is 0 (there is the
same chance to underestimate or to overestimate the lifetime)
and whose standard deviation is σ = ln(2), corresponding to
a typical error factor of 2 (the lifetime prediction is two time
shorter or longer than the real lifetime).



And we can compare this variable with the median value
of the lifetime for the Energy Storage System M

(
Tlife ESS

)
that corresponds to the inverse of the average aging speed, i.e.:

M
(
Tlife ESS

)
=

(
1

∆t

∫ ∆t

0

dSoA

dt
dt

)−1

(10)

Fig. 7 illustrated this relation. This figure shows the number
of replacement as a function of the median value of the
lifetime M

(
Tlife ESS

)
, calculated using (5) and (6). The

usage time for the complete DWEC is supposed to be 20
years. The different areas represent different probabilities to
have a number of replacement during this period of time. This
is close to reliability or decision risk approaches. For a lifetime
prediction of 20, 40 and 60 years, we can see the probability
to have a given number of replacements (0, 1, 2 or 3) during
the considered lifetime. We can notice that Fig. 7 does not
depend on the aging model or even the problem, but only on
the distribution choose to represent the uncertainty.
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C. Results

The expected value of the cost as a function of rated energy
for both technolgies is shown in Fig. 8. For this figure, we
change the replacement cost with its expected value :

E
(
Clife

)
= cEnergy ERated

+ cEnergy E
(
Nstoch.

replace

)
ERated

+ cFeed−in < Ploss > ∆t

(11)

We can notice that the supercapacitors solution is a trade-off
between investment and replacements and the battery solution
is more a trade-off between investment and losses.

Table III lists selected characteristics of two optimal so-
lutions. While the rated energy and expected lifetime results
differ by a wide margin, a similar price and weight is still
found even though, in this case, the supercapacitor seems to
be the cheaper solution.
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Fig. 8. Expected life cycle cost as a function of energy capacity with uncertain
aging models for an ambient temperature of 25 ◦C

The energy used is around 0.25 kWh, that is very small
compared to the energy capacity in both case. So the State-of-
Energy with both technologies is almost constant, so the sim-
plified electrical models are partly justified (State-of-Charge
dependency is not useful here).

TABLE III
COMPARISON OF THE TWO OPTIMUMS (AMBIANT TEMPERATURE: 25◦C)

Supercapacitor Li-ion battery
Erated 2.3 kWh 75 kWh
E(Clife) 53 ke 64 ke
Prated 1.7 MW 0.75 MW
Weight 1000 kg 1400 kg
Volume 2.2 m3 0.70 m3

Round trip efficiency 98 % 96 %
Expected lifetime M

(
Tlife ESS

)
44 years 20 years

Probability(Nreplace = 0) 87 % 49 %
Probability(Nreplace = 1) 11 % 35 %
Probability(Nreplace = 2) 1.3 % 11 %

Because the aging is important for the cost, the life cycle
cost has an important dependency on ambient temperature
(see Fig. 9). The optimum for battery technology does not
change a lot with the ambient temperature, because it is
mainly a trade-off between losses and investment that does not
depend on aging. The supercapacitor optimum size is bigger
when temperature is bigger because it is a trade-off between
investment and replacements, that depends a lot on aging. For
the same reason, the optimum for supercapacitor does not
depend a lot on storage price while the optimum for Li-ion
battery changes with price.
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IV. CONCLUSION

The goal of this study is to determine which technology
has the lowest life cycle cost between supercapacitors and Li-
ion batteries in a specific case, that is smoothing Direct Wave
Energy Converter with a flicker constraint.

For this purpose, we use electrical, thermal, aging and cost
models. The life cycle cost analysis proposed here considers
the investment, the replacements and the losses.

The first optimum seems to suffer from a lack of robustness,
so we decide to take into account the uncertainty of aging
models with an error factor that follows a normal distribution.

Supercapacitors seems to be cheaper for this application,
but power Li-ion batteries are not excessively more expensive
and results may change if battery prices fall faster than those
of supercapacitor.

The purpose of the sizing is to minimize life cycle costs. The
final life cycle cost of around 53 ke seems to be admissible,
representing an impact on energy costs around 2.4e per MWh
produced.

To further decrease this cost, several solutions can be studied
such as an improved energy management [24].

This study is only part of the design of a complete electric
conversion chain that takes lifetime into account [25] [26].
In the case of DWEC, other more efficient control strategies
to convert wave energy are available [27], though these would
also be more stringent in terms of power fluctuation and hence
in terms of flicker and fatigue cycling. The influence of such
control strategies for energy conversion should be considered
in future research on this topic.
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de doctorat, thèse de doctorat de l’Ecole Normale Supérieure de Cachan,
2011. [Online]. Available: http://tel.archives-ouvertes.fr/tel-00662488

[3] A. Blavette, D. L. O’Sullivan, T. W. Lewis, and M. G. Egan, “Dimen-
sioning the equipment of a wave farm: Energy storage and cables,”
in Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo,
Monaco, Mar. 2013, pp. 1–9.

[4] T. Kovaltchouk, B. Multon, H. Ben Ahmed, J. Aubry, and P. Venet,
“Enhanced aging model for supercapacitors taking into account power
cycling: Application to the sizing of an Energy Storage System in a
Direct Wave Energy Converter,” in Ecological Vehicles and Renewable
Energies (EVER), Monte-Carlo, Monaco, Mar. 2014, pp. 1–10.

[5] A. Babarit and A. H. Clément, “Optimal latching control of a wave
energy device in regular and irregular waves,” Applied Ocean Research,
vol. 28, no. 2, pp. 77–91, Apr. 2006.

[6] J. Aubry, P. Bydlowski, B. Multon, H. Ben Ahmed, and B. Borgarino,
“Energy Storage System Sizing for Smoothing Power Generation of
Direct Wave Energy Converters,” in 3rd International Conference
on Ocean Energy, Bilbao, Oct. 2010, pp. 1–7. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00526435/

[7] P. Haessig, B. Multon, H. Ben Ahmed, S. Lascaud, and L. Jamy,
“Aging-aware NaS battery model in a stochastic wind-storage simulation
framework,” in PowerTech, IEEE, Grenoble, 2013.

[8] R. Le Goff Latimier, T. Kovaltchouk, H. Ben Ahmed, and B. Multon,
“Preliminary Sizing of a Collaborative System : Photovoltaic Power
Plant and Electric Vehicle Fleet,” in Ecological Vehicles and Renewable
Energies (EVER), Monaco, 2014.

[9] V. Musolino and E. Tironi, “A comparison of supercapacitor and high-
power lithium batteries,” in Electrical Systems for Aircraft, Railway and
Ship Propulsion (ESARS), 2010, 2010, pp. 1–6.

[10] R. T. Doucette and M. D. McCulloch, “A comparison of high-speed
flywheels, batteries, and ultracapacitors on the bases of cost and fuel
economy as the energy storage system in a fuel cell based hybrid electric
vehicle,” Journal of Power Sources, vol. 196, no. 3, pp. 1163–1170, Feb.
2011.

[11] International Electrotechnical Commission (IEC), “Electrical Energy
Storage White paper,” Tech. Rep. December, 2011.

[12] Z. Zhou, M. Benbouzid, J. F. Charpentier, F. Scuiller, and T. Tang,
“A review of energy storage technologies for marine current energy
systems,” Renewable and Sustainable Energy Reviews, vol. 18, pp. 390–
400, Feb. 2013.

[13] S. Schoenung and W. Hassenzahl, “Long-vs. Short-Term Energy Storage
Technologies Analysis. A Life-Cycle Cost Study. A Study for the DOE
Energy Storage Systems Program,” Sandia National Laboratories, Tech.
Rep., 2003.

[14] S. Upadhyay and M. Sharma, “A review on configurations, control
and sizing methodologies of hybrid energy systems,” Renewable and
Sustainable Energy Reviews, vol. 38, pp. 47–63, Oct. 2014.

[15] S. Caux, J. Lachaize, M. Fadel, P. Shott, and L. Nicod, “Modelling
and control of a Fuel Cell System and Storage Elements in transport
applications,” Journal of Process Control, vol. 15, no. 4, pp. 481–491,
Jun. 2005.

[16] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “Integration of
an Energy Capacitor System With a Variable-Speed Wind Generator,”
IEEE Transactions on Energy Conversion, vol. 24, no. 3, pp. 740–749,
Sep. 2009.

[17] G. Suvire and P. Mercado, “Active power control of a flywheel energy
storage system for wind energy applications,” IET Renewable Power
Generation, vol. 6, no. 1, pp. 9–16, 2012.

[18] Maxwell Technologies, “Datasheet K2 Series Ultracapacitors,” pp. 1–4,
2007.

[19] Altairnano, “Datasheet 24 V 60 Ah Battery Module, nano Lithium-
Titanate battery module,” 2011.

[20] B. Misback and Altairnano, “Large Format Li4Ti5O12 Lithium-Ion
Batteries Performance and Applications,” in Li Mobile Power. Boston:
Altairnano, 2010, pp. 1–13.

[21] S. Downing and D. Socie, “Simple rainflow counting algorithms,”
International Journal of Fatigue, no. January, pp. 31–40, 1982.

[22] American Society for Testing and Materials, “E-1049 85 (Reapproved
2011). Standard practices for cycle counting in fatigue analysis,” Tech.
Rep., 1985.



[23] A. Nieslony, “Determination of fragments of multiaxial service loading
strongly influencing the fatigue of machine components,” Mechanical
Systems and Signal Processing, vol. 23, no. 8, pp. 2712–2721, Nov.
2009.

[24] P. Haessig, T. Kovaltchouk, B. Multon, H. Ben Ahmed, and S. Lascaud,
“Computing an Optimal Control Policy for an Energy Storage,” in
EuroScyPy, Brussels, Belgium, Aug. 2013, pp. 1–8.

[25] J. Aubry, H. Ben Ahmed, and B. Multon, “Sizing Optimization Method-
ology of a Surface Permanent Magnet Machine-Converter System over
a Torque-Speed Operating Profile : Application to a Wave Energy
Converter,” Industrial Electronics, IEEE Transactions on, vol. 59, no. 5,
pp. 2116,2125, 2012.

[26] T. Kovaltchouk, J. Aubry, B. Multon, and H. Ben Ahmed, “Influence of
IGBT current rating on the thermal cycling lifetime of a power electronic
active rectifier in a direct wave energy converter,” in Power Electronics
and Applications (EPE), Lille, 2013, pp. 1–10.

[27] T. Kovaltchouk, B. Multon, H. Ben Ahmed, F. Rongère, A. Glumineau,
and J. Aubry, “Influence of control strategy on the global efficiency
of a Direct Wave Energy Converter with electric Power Take-Off,”
in Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo,
Monaco, Mar. 2013, pp. 1–10.


