R. W. Scott and M. F. Olson, LIM kinases: function, regulation and association with human disease, J Mol Med, vol.85, pp.555-68, 2007.

R. Prudent, E. Vassal-stermann, C. H. Nguyen, C. Pillet, A. Martinez et al., Pharmacological inhibition of LIM kinase stabilizes microtubules and inhibits neoplastic growth, Cancer Res, vol.72, pp.4429-4468, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02348076

M. Gorovoy, J. Niu, O. Bernard, J. Profirovic, R. Minshall et al., LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells, J Biol Chem, vol.280, pp.26533-26575, 2005.

, Elevated LIM Kinase 1 in Nonmetastatic Prostate Cancer Reflects Its Role in Facilitating Androgen Receptor Nuclear Translocation, Mol Cancer Ther, vol.14, pp.246-58, 2015.

A. Bhardwaj, S. K. Srivastava, S. Singh, S. Arora, N. Tyagi et al.,

, CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1, Oncotarget, vol.5, pp.11490-500, 2014.

I. Pleines, S. Dütting, D. Cherpokova, A. Eckly, I. Meyer et al., Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42, Blood, vol.122, pp.3178-87, 2013.

C. M. Fife, J. A. Mccarroll, and M. Kavallaris, Movers and shakers: cell cytoskeleton in cancer metastasis, Br J Pharmacol, vol.171, pp.5507-5530, 2014.

, Molecular Pathways: Targeting the Kinase Effectors of RHO-Family GTPases

R. S. Mali and R. Kapur, Targeting Rho associated kinases in leukemia and myeloproliferative neoplasms, Oncotarget, vol.3, pp.909-919, 2012.

E. Sahai and C. J. Marshall, RHO-GTPases and cancer, Nat Rev Cancer, vol.2, pp.133-175, 2002.

N. Rath and M. F. Olson, Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy, EMBO Rep, vol.13, pp.900-908, 2012.

F. Manetti, LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators, Med Res Rev, vol.32, pp.968-98, 2012.

W. Wang, S. Goswami, K. Lapidus, A. L. Wells, J. B. Wyckoff et al., Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors, Cancer Res, vol.64, pp.8585-94, 2004.

I. Okamoto, C. Pirker, M. Bilban, W. Berger, D. Losert et al., Seven novel and stable translocations associated with oncogenic gene expression in malignant melanoma, Neoplasia, vol.7, pp.303-314, 2005.

J. Park, S. Agnihotri, B. Golbourn, K. C. Bertrand, A. Luck et al., Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway, Oncotarget, vol.5, pp.9382-95, 2014.

M. Davila, A. R. Frost, W. E. Grizzle, and R. Chakrabarti, LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer, J Biol Chem, vol.278, pp.36868-75, 2003.

T. Ahmed, K. Shea, J. Masters, G. E. Jones, and C. M. Wells, A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF, Cell Signal, vol.20, pp.1320-1328, 2008.

B. Mcconnell, K. Koto, and A. Gutierrez-hartmann, Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression, Mol Cancer, vol.10, p.75, 2011.

R. Bagheri-yarmand, A. Mazumdar, A. A. Sahin, and R. Kumar, LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system, Int J Cancer, vol.118, pp.2703-2713, 2006.

T. Shibue, M. W. Brooks, and R. A. Weinberg, An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization, Cancer Cell, vol.24, pp.481-98, 2013.

F. Manetti, Recent Findings Confirm LIM Domain Kinases as Emerging Target Candidates for Cancer Therapy. Curr. Cancer Drug Targets, pp.543-60, 2012.

P. Ross-macdonald, H. De-silva, Q. Guo, H. Xiao, C. Y. Hung et al., Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors, Mol Cancer Ther, vol.7, pp.3490-3498, 2008.

B. A. Harrison, N. A. Whitlock, M. Voronkov, Z. Y. Almstead, K. J. Gu et al., Novel class of LIM-kinase 2 inhibitors for the treatment of ocular hypertension and associated glaucoma, J Med Chem, vol.52, pp.6515-6523, 2009.

B. A. Harrison, Z. Y. Almstead, H. Burgoon, M. Gardyan, N. C. Goodwin et al., Discovery and Development of LX7101, a Dual LIM-Kinase and ROCK Inhibitor for the Treatment of Glaucoma, ACS Med Chem Lett, vol.6, pp.84-92, 2015.

K. Ohashi, K. Sampei, M. Nakagawa, N. Uchiumi, T. Amanuma et al.,

, Damnacanthal, an effective inhibitor of LIM-kinase, inhibits cell migration and invasion, Mol Biol Cell, vol.25, pp.828-868, 2014.

E. Mashiach-farkash, R. Rak, G. Elad-sfadia, R. Haklai, S. Carmeli et al., Computer-based identification of a novel LIMK1/2 inhibitor that synergizes with salirasib to destabilize the actin cytoskeleton, Oncotarget. Impact Journals, vol.3, pp.629-668, 2012.

R. Rak, R. Haklai, G. Elad-tzfadia, H. J. Wolfson, S. Carmeli et al., Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model, Oncoscience. Impact Journals, LLC, vol.20141, pp.39-48

Y. Yin, K. Zheng, N. Eid, S. Howard, J. Jeong et al., Bis-aryl Urea Derivatives as Potent and Selective LIM Kinase (Limk) Inhibitors, J Med Chem. American Chemical Society, vol.58, pp.1846-61, 2015.

P. Nanni, C. De-giovanni, P. L. Lollini, G. Nicoletti, and G. Prodi, TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma, Clin Exp Metastasis, vol.1, pp.373-80

J. A. Vendrell, A. Thollet, N. T. Nguyen, S. E. Ghayad, S. Vinot et al., ZNF217 is a marker of poor prognosis in breast cancer that drives epithelial-mesenchymal transition and invasion, Cancer Res, vol.72, pp.3593-606, 2012.

C. Albiges-rizo, O. Destaing, B. Fourcade, E. Planus, and M. R. Block, Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions, J Cell Sci, vol.122, pp.3037-3086, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410924

T. Shibue and R. A. Weinberg, Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs, Proc Natl Acad Sci U S A, vol.106, pp.10290-10295, 2009.

A. Zomer, S. Ellenbroek, L. Ritsma, E. Beerling, N. Vrisekoop et al., Intravital imaging of cancer stem cell plasticity in mammary tumors, Stem Cells, vol.31, pp.602-608, 2013.

K. Yoshioka, V. Foletta, O. Bernard, and K. Itoh, A role for LIM kinase in cancer invasion, Proc Natl Acad Sci, vol.100, pp.7247-52, 2003.

W. Wang, R. Eddy, and J. Condeelis, The cofilin pathway in breast cancer invasion and metastasis, Nat Rev Cancer, vol.7, pp.429-469, 2007.

T. Shibue, M. W. Brooks, M. F. Inan, F. Reinhardt, and R. A. Weinberg, The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions, Cancer Discov, vol.2, pp.706-727, 2012.

A. Thollet, J. A. Vendrell, L. Payen, S. E. Ghayad, B. Larbi et al., ZNF217 confers resistance to the pro-apoptotic signals of paclitaxel and aberrant expression of Aurora-A in breast cancer cells, Mol Cancer, vol.9, p.291, 2010.

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-borrego, C. Sáez et al., Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction, Breast Cancer Res Treat, vol.133, pp.917-945, 2012.

M. M. Janát-amsbury, J. W. Yockman, M. Lee, S. Kern, D. Y. Furgeson et al., Combination of local, nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model, Mol Ther, vol.9, pp.829-865, 2004.

J. Riondel, M. Jacrot, F. Picot, H. Beriel, C. Mouriquand et al., Therapeutic response to taxol of six human tumors xenografted into nude mice, Cancer Chemother Pharmacol, vol.17, pp.137-179, 1986.

K. Mardilovich, M. Baugh, D. Crighton, D. Kowalczyk, M. Gabrielsen et al., LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation, Oncotarget, vol.6, pp.38469-86, 2015.

O. Destaing, E. Planus, D. Bouvard, C. Oddou, C. Badowski et al., ?1A integrin is a master regulator of invadosome organization and function, Mol Biol Cell, vol.21, pp.4108-4127, 2010.

J. J. Bravo-cordero, M. Magalhaes, R. J. Eddy, L. Hodgson, and J. Condeelis, Functions of cofilin in cell locomotion and invasion, Nat Rev Mol Cell Biol. NIH Public Access, vol.14, pp.405-420, 2013.

D. Entenberg, D. Kedrin, J. Wyckoff, E. Sahai, J. Condeelis et al., Imaging tumor cell movement in vivo, Curr Protoc Cell Biol, 2013.

E. Beerling, L. Ritsma, N. Vrisekoop, P. Derksen, and J. Van-rheenen, Intravital microscopy: new insights into metastasis of tumors, J Cell Sci, vol.124, pp.299-310, 2011.

M. E. Bunnage, E. Chekler, and L. H. Jones, Target validation using chemical probes, Nat Chem Biol, vol.9, pp.195-204, 2013.

W. Wang, G. Mouneimne, M. Sidani, J. Wyckoff, X. Chen et al., The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors, J Cell Biol, vol.173, pp.395-404, 2006.

S. Etienne-manneville, Microtubules in cell migration, Annu Rev Cell Dev Biol, vol.29, pp.471-99, 2013.

K. Wolf and P. Friedl, Extracellular matrix determinants of proteolytic and non-proteolytic cell migration, Trends Cell Biol, vol.21, pp.736-780, 2011.

B. Gligorijevic, A. Bergman, and J. Condeelis, Multiparametric classification links tumor microenvironments with tumor cell phenotype, PLoS Biol, vol.12, p.1001995, 2014.

, A. Pyr1 effects on cofilin phosphorylation. Cells were treated for 2 hours with 0.25% DMSO, 10µM or 25µM Pyr1, as indicated. Lysates (15 ?g of proteins) were blotted for phospho-Cofilin (P-Cofilin) or Cofilin

B. , Pyr1 effect on microtubule resistance to nocodazole-induced depolymerization. Cells were incubated with 25µM Pyr1 or 0.25% DMSO before nocodazole (10µM) addition. They were then stained for tubulin, p.10

C. , Pyr1 effect on the viability of breast cancer cell lines. Cells were incubated for 48 hours with Pyr1. The percentage of viable cells was calculated following MTT assay

, Rightmost panel shows a still image at t = 0 min with an overlay of the cumulative centroid tracks of the rounded cells. Bar, 20µm. Figure 7: Analysis of Pyr1 effect on metastasis establishment

A. , Representative images of Dendra2 fluorescence in lung sections, of mice bearing MDA-MB-231 Dendra2 mammary tumors, treated (Pyr1) or not (vehicle), p.100

B. , Histograms represent the average number ± SEM of metastasis nodules in the lung of mice treated with vehicle or 10 mg/Kg Pyr1. n = 6 fields per lung, 3 mice per group

D. , Effect of Pyr1 on MDA-MB-231-ZNF217rvLuc2 metastatic colonization

, Metastases colonization was followed by bioluminescence. Histograms represent the average number ± SEM of metastatic sites, quantified on the bioluminescence images

E. , Quantification of total metastatic load using bioluminescence

, At day 35, the vehicle treated mice were sacrificed and the treatment with Pyr1 was stopped for the other group. Bars = SEM, n = 10 mice for each group, p.1

F. , Representative bioluminescence images of one mouse per condition, treated (Pyr1) or not (vehicle) are presented