F. Chiti and C. M. Dobson, Amyloid formation by globular proteins under native conditions, Nat. Chem. Biol, vol.5, pp.15-22, 2009.

S. Valleix, Hereditary systemic amyloidosis due to Asp76Asn variant beta2-microglobulin, N. Engl. J. Med, vol.366, pp.2276-2283, 2012.

L. Halabelian, Class I major histocompatibility complex, the trojan horse for secretion of amyloidogenic beta2-microglobulin, J. Biol. Chem, vol.289, pp.3318-3327, 2014.

P. P. Mangione, Structure, folding dynamics, and amyloidogenesis of D76N beta2-microglobulin: roles of shear flow, hydrophobic surfaces, and alpha-crystallin, J. Biol. Chem, vol.288, pp.30917-30930, 2013.

T. R. Jahn and S. E. Radford, The Yin and Yang of protein folding, FEBS J, vol.272, pp.5962-5970, 2005.

L. B. Andreas, L. Marchand, T. Jaudzems, K. Pintacuda, and G. , Highresolution proton-detected NMR of proteins at very fast MAS, J. Magn. Reson, vol.253, pp.36-49, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187157

A. Bockmann, M. Ernst, and B. H. Meier, Spinning proteins, the faster, the better?, J. Magn. Reson, vol.253, pp.71-79, 2015.

V. Chevelkov, U. Fink, and B. Reif, Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy, J. Biomol. NMR, vol.45, pp.197-206, 2009.

M. J. Knight, Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR, Proc. Natl Acad. Sci. USA, vol.109, pp.11095-11100, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00809200

J. R. Lewandowski, Measurement of site-specific C-13 spin-lattice relaxation in a crystalline Protein, J. Am. Chem. Soc, vol.132, p.8252, 2010.

M. Tollinger, A. C. Sivertsen, B. H. Meier, M. Ernst, and P. Schanda, Siteresolved measurement of microsecond-to-millisecond conformationalexchange processes in proteins by solid-state NMR spectroscopy, J. Am. Chem. Soc, vol.134, pp.14800-14807, 2012.

A. Mcdermott, Structure and dynamics of membrane proteins by magic angle spinning solid-State NMR, Annu. Rev. Biophys, vol.38, pp.385-403, 2009.

D. B. Good, Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR, J. Am. Chem. Soc, vol.136, pp.2833-2842, 2014.

O. Saurel, Local and global dynamics in klebsiella pneumoniae outer membrane protein a in lipid bilayers probed at atomic resolution, J. Am. Chem. Soc, vol.139, pp.1590-1597, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01503512

A. A. Smith, E. Testori, R. Cadalbert, B. H. Meier, and M. Ernst, Characterization of fibril dynamics on three timescales by solid-state NMR, J. Biomol. NMR, vol.65, pp.171-191, 2016.

M. Bonomi, G. T. Heller, C. Camilloni, and M. Vendruscolo, Principles of protein structural ensemble determination, Curr. Opin. Struct. Biol, vol.42, pp.106-116, 2017.

M. De-rosa, Decoding the structural bases of D76N ss2-microglobulin high amyloidogenicity through crystallography and Asn-Scan mutagenesis, PLoS ONE, vol.10, p.144061, 2015.

G. Esposito, The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties, J. Mol. Biol, vol.378, pp.887-897, 2008.

G. Lipari and A. Szabo, A model-free approach to the interpretation of Nmr relaxation in macromolecules, Biophys. J, vol.33, pp.307-307, 1981.

L. Mollica, Atomic-resolution structural dynamics in crystalline proteins from NMR and molecular simulation, J. Phys. Chem. Lett, vol.3, pp.3657-3662, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00809244

A. G. Palmer and F. Massi, Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy, Chem. Rev, vol.106, pp.1700-1719, 2006.

C. Camilloni, A. Cavalli, and M. Vendruscolo, Replica-averaged metadynamics, J. Chem. Theory Comput, vol.9, pp.5610-5617, 2013.

C. Camilloni, P. Robustelli, A. De-simone, A. Cavalli, and M. Vendruscolo, Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts, J. Am. Chem. Soc, vol.134, pp.3968-3971, 2012.

P. Sormanni, F. A. Aprile, and M. Vendruscolo, The CamSol method of rational design of protein mutants with enhanced solubility, J. Mol. Biol, vol.427, pp.478-490, 2015.

C. Camilloni, Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability, Sci. Rep, vol.6, p.25559, 2016.

E. Barbet-massin, Rapid proton-detected NMR assignment for proteins with fast magic angle spinning, J. Am. Chem. Soc, vol.136, pp.12489-12497, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070782

Y. Shen and A. Bax, Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks, J. Biomol. NMR, vol.56, pp.227-241, 2013.

D. Sharma and K. Rajarathnam, 13C NMR chemical shifts can predict disulfide bond formation, J. Biomol. NMR, vol.18, pp.165-171, 2000.

C. J. Sarell, Expanding the repertoire of amyloid polymorphs by copolymerization of related protein precursors, J. Biol. Chem, vol.288, pp.7327-7337, 2013.

A. T. Petkova, W. M. Yau, and R. Tycko, Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils, Biochemistry, vol.45, pp.498-512, 2006.

M. J. Knight, Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy, Angew. Chem. Int. Ed. Engl, vol.50, pp.11697-11701, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00809132

A. E. Bennett, J. H. Ok, R. G. Griffin, and S. Vega, Chemical shift correlation spectroscopy in rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange, J. Chem. Phys, vol.96, pp.8624-8627, 1992.

A. Krushelnitsky, T. Zinkevich, D. Reichert, V. Chevelkov, and B. Reif, Microsecond time scale mobility in a solid protein as studied by the 15N R (1rho) site-specific NMR relaxation rates, J. Am. Chem. Soc, vol.132, pp.11850-11853, 2010.

J. R. Lewandowski, H. J. Sass, S. Grzesiek, M. Blackledge, and L. Emsley, Site-specific measurement of slow motions in proteins, J. Am. Chem. Soc, vol.133, pp.16762-16765, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00700323

V. Kurauskas, Slow conformational exchange and overall rocking motion in ubiquitin protein crystals, Nat. Commun, vol.8, p.145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01538940

G. Esposito, Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation, Protein Sci, vol.9, pp.831-845, 2000.

T. K. Karamanos, A. P. Kalverda, G. S. Thompson, and S. E. Radford, Visualization of transient protein-protein interactions that promote or inhibit amyloid assembly, Mol. Cell, vol.55, pp.214-226, 2014.

E. Barbet-massin, Fibrillar vs crystalline full-length beta-2-microglobulin studied by high-resolution solid-state NMR spectroscopy, J. Am. Chem. Soc, vol.132, pp.5556-5557, 2010.

G. T. Debelouchina, G. W. Platt, M. J. Bayro, S. E. Radford, and R. G. Griffin, Magic angle spinning NMR analysis of beta(2)-microglobulin amyloid fibrils in two distinct morphologies, J. Am. Chem. Soc, vol.132, pp.10414-10423, 2010.

Y. C. Su, Secondary structure in the core of amyloid fibrils formed from human beta(2)m and its truncated variant delta N6, J. Am. Chem. Soc, vol.136, pp.6313-6325, 2014.

D. De-sanctis, ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering, J. Synchrotron Radiat, vol.19, pp.455-461, 2012.

D. Flot, The ID23-2 structural biology microfocus beamline at the ESRF, J. Synchrotron Radiat, vol.17, pp.107-118, 2010.

D. Nurizzo, The ID23-1 structural biology beamline at the ESRF, J. Synchrotron Radiat, vol.13, pp.227-238, 2006.

G. P. Bourenkov and A. N. Popov, A quantitative approach to data-collection strategies, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.58-64, 2006.

A. G. Leslie, Joint CCP4+ESF-EACMB Newsletter on Protein Crystallography Number, vol.27, pp.30-31, 1992.

, The CCP4 suite: programs for protein crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.50, pp.760-763, 1994.

A. J. Mccoy, Phaser crystallographic software, J. Appl. Cryst, vol.40, pp.658-674, 2007.

P. D. Adams, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

S. Mcnicholas, E. Potterton, K. S. Wilson, and M. E. Noble, Presenting your structures: the CCP4mg molecular-graphics software, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.386-394, 2011.

E. Barbet-massin, Rapid proton-detected NMR assignment for proteins with fast magic angle spinning, J. Am. Chem. Soc, vol.136, pp.12489-12497, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070782

M. J. Abraham, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, pp.19-25, 2015.

K. Lindorff-larsen, Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, vol.78, pp.1950-1958, 2010.

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P, J. Chem. Phys, vol.123, p.234505, 2005.

G. A. Tribello, F. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi, PLUMED 2: new feathers for an old bird, Comput. Phys. Commun, vol.182, pp.604-613, 2014.

R. B. Best and J. Mittal, Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse, J. Phys. Chem. B, vol.114, pp.14916-14923, 2010.

C. Camilloni and M. Vendruscolo, Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics, J. Am. Chem. Soc, vol.136, pp.8982-8991, 2014.

S. Piana and A. Laio, A bias-exchange approach to protein folding, J. Phys. Chem. B, vol.111, pp.4553-4559, 2007.

F. Marinelli, F. Pietrucci, A. Laio, and S. Piana, A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations, PLoS Comput. Biol, vol.5, p.1000452, 2009.