A. Ceriello and E. Motz, Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited, Arterioscler Thromb Vasc Biol, vol.24, pp.816-823, 2004.

N. Bashan, J. Kovsan, and I. Kachko, Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species, Physiol Rev, vol.89, pp.27-71, 2009.

J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocr Rev, vol.23, pp.599-622, 2002.

F. J. Van-kuijk, L. L. Holte, and E. A. Dratz, 4-Hydroxyhexenal: a lipid peroxidation product derived from oxidized docosahexaenoic acid, Biochim Biophys Acta, vol.1043, pp.116-118, 1990.

N. J. Pillon, L. Soulère, and R. E. Vella, Quantitative structureactivity relationship for 4-hydroxy-2-alkenal induced cytotoxicity in L6 muscle cells, Chem Biol Interact, vol.188, pp.171-180, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00759515

N. J. Pillon and C. O. Soulage, Lipid peroxidation by-products and the metabolic syndrome, 2012.

A. Negre-salvayre, C. Coatrieux, C. Ingueneau, and R. Salvayre, Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors, Br J Pharmacol, vol.153, pp.6-20, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00420347

G. Cohen, Y. Riahi, and V. Sunda, Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes, Free Radic Biol Med, vol.65, pp.978-987, 2013.

G. Vistoli, D. Maddis, D. Cipak, and A. , Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation, Free Radic Res, vol.47, issue.1, pp.3-27, 2013.

Y. Ihara, S. Toyokuni, and K. Uchida, Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes, Diabetes, vol.48, pp.927-932, 1999.

N. Traverso, S. Menini, and P. Odetti, Diabetes impairs the enzymatic disposal of 4-hydroxynonenal in rat liver, Free Radic Biol Med, vol.32, pp.350-359, 2002.

N. Traverso, S. Menini, and L. Cosso, Immunological evidence for increased oxidative stress in diabetic rats, Diabetologia, vol.41, pp.265-270, 1998.

I. Miwa, N. Ichimura, and M. Sugiura, Inhibition of glucoseinduced insulin secretion by 4-hydroxy-2-nonenal and other lipid peroxidation products, Endocrinology, vol.141, pp.2767-2772, 2000.

D. Demozay, J. Mas, S. Rocchi, and E. Van-obberghen, FALDH reverses the deleterious action of oxidative stress induced by lipid peroxidation product 4-hydroxynonenal on insulin signaling in 3T3-L1 adipocytes, Diabetes, vol.57, pp.1216-1226, 2008.

N. J. Pillon, M. L. Croze, and R. E. Vella, The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress, Endocrinology, vol.153, pp.2099-2111, 2012.

A. Gil and F. Gil, Fish, a Mediterranean source of n-3 PUFA: benefits do not justify limiting consumption, Br J Nutr, vol.113, issue.2, pp.58-67, 2015.

M. Awada, C. O. Soulage, and A. Meynier, Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells, J Lipid Res, vol.53, pp.2069-2080, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00725905

N. Shibata, S. Yamada, and K. Uchida, Accumulation of protein-bound 4-hydroxy-2-hexenal in spinal cords from patients with sporadic amyotrophic lateral sclerosis, Brain Res, vol.1019, pp.170-177, 2004.

S. Yamada, T. Funada, and N. Shibata, Protein-bound 4-hydroxy-2-hexenal as a marker of oxidized n-3 polyunsaturated fatty acids, J Lipid Res, vol.45, pp.626-634, 2004.

M. Tanito, M. H. Elliott, Y. Kotake, and R. E. Anderson, Protein modifications by 4-hydroxynonenal and 4-hydroxyhexenal in light-exposed rat retina, Invest Ophthalmol Vis Sci, vol.46, pp.3859-3868, 2005.

S. Bacot, N. Bernoud-hubac, and N. Baddas, Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses, J Lipid Res, vol.44, pp.917-926, 2003.

J. H. Je, J. Y. Lee, and K. J. Jung, NF-?B activation mechanism of 4-hydroxyhexenal via NIK/IKK and p38 MAPK pathway, FEBS Lett, vol.566, pp.183-189, 2004.

J. Y. Lee, J. H. Je, and K. J. Jung, Induction of endothelial iNOS by 4-hydroxyhexenal through NF-?B activation, Free Radic Biol Med, vol.37, pp.539-548, 2004.

L. Soulère, Y. Queneau, and A. Doutheau, An expeditious synthesis of 4-hydroxy-2E-nonenal (4-HNE), its dimethyl acetal and of related compounds, Chem Phys Lipids, vol.150, pp.239-243, 2007.

E. W. Kraegen, D. E. James, S. P. Bennett, and D. J. Chisholm, In vivo insulin sensitivity in the rat determined by euglycemic clamp, Am J Phys, vol.245, pp.1-7, 1983.

M. Michalski, C. Calzada, and A. Makino, Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk-a preliminary study, Mol Nutr Food Res, vol.52, pp.1478-1485, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02141688

R. L. Levine, N. Wehr, and J. A. Williams, Determination of carbonyl groups in oxidized proteins, Methods Mol Biol, vol.99, pp.15-24, 2000.

E. Ferrannini, D. C. Simonson, and L. D. Katz, The disposal of an oral glucose load in patients with non-insulin-dependent diabetes, Metab Clin Exp, vol.37, pp.79-85, 1988.

S. S. Singhal, S. P. Singh, and P. Singhal, Antioxidant role of glutathione S-transferases: 4-hydroxynonenal, a key molecule in stress-mediated signaling, Toxicol Appl Pharmacol, vol.289, pp.361-370, 2015.

E. Niki, Lipid peroxidation: physiological levels and dual biological effects, Free Radic Biol Med, vol.47, pp.469-484, 2009.

K. Syslová, P. Kacer, and M. Kuzma, Rapid and easy method for monitoring oxidative stress markers in body fluids of patients with asbestos or silica-induced lung diseases, J Chromatogr B Anal Technol Biomed Life Sci, vol.877, pp.2477-2486, 2009.

M. Daimon, K. Sugiyama, and W. Kameda, Increased urinary levels of pentosidine, pyrraline and acrolein adduct in type 2 diabetes, Endocr J, vol.50, pp.61-67, 2003.

S. Bacot, N. Bernoud-hubac, and B. Chantegrel, Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals, J Lipid Res, vol.48, pp.816-825, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139399

C. Calzada, R. Colas, and N. Guillot, Subgram daily supplementation with docosahexaenoic acid protects low-density lipoproteins from oxidation in healthy men, Atherosclerosis, vol.208, pp.467-472, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01889297

N. Guillot, E. Caillet, and M. Laville, Increasing intakes of the long-chain omega-3 docosahexaenoic acid: effects on platelet functions and redox status in healthy men, FASEB J, vol.23, pp.2909-2916, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00387440

E. Véricel, R. Colas, and C. Calzada, Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients, Thromb Haemost, vol.114, pp.289-296, 2015.

K. D. Copps and M. F. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2, Diabetologia, vol.55, pp.2565-2582, 2012.

G. Leonarduzzi, F. Robbesyn, and G. Poli, Signaling kinases modulated by 4-hydroxynonenal, Free Radic Biol Med, vol.37, pp.1694-1702, 2004.

E. K. Long, T. C. Murphy, and L. J. Leiphon, Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation, J Neurochem, vol.105, pp.714-724, 2008.

E. K. Long, T. A. Rosenberger, and M. J. Picklo, Ethanol withdrawal increases glutathione adducts of 4-hydroxy-2-hexenal but not 4-hydroxyl-2-nonenal in the rat cerebral cortex, Free Radic Biol Med, vol.48, pp.384-390, 2010.