5. and H. Ar, 34 (d, 1H, J = 3.1 Hz, H 4? ), 6.07 (d, 1H, J = 3.1 Hz, H 3? ), vol.6, p.83

, CH Ar ), 110.3 (C 4? ), 106.0 (C 3? ), 96.7 (C 5 ), 71.0 (C? H 2 Ph), 63.4 (C 5? -C? H 2 ), vol.150

H. Nmr, 400 MHz, DMSO-d 6 ) ? 8.93 (s, 1H, H 1 )

5. and H. Ar, , vol.6

H. Hz and . 3?,

D. Mhz, CH Ar ), 127.5 (CH Ar ), 110.2 (C 4? ), HRMS (ESI) m/z: calcd for, vol.138, p.3

H. Nmr,

1. , J. Hz, and H. 4?, CH? 2 OH), 3.07 (s, 3H, NCH 3 ), 2.42 (s, 3H, C 6 -CH 3 ), 2.19 (s, 3H, COCH 3 ). 13 C NMR (75 MHz, DMSO-d 6 ) ? 195.0 (C? OCH 3 ), 155.2, 154.5 (C 2? and C 5? ), 6.05 (dd, 1H, J = 3.1, 0.5 Hz, H 3? ), 5.22 (d, 1H, J = 4.1 Hz, H 4 ), 5.16 (t, 1H, J = 5.7 Hz, OH), 4.33 (d, 2H, J = 5.6 Hz, vol.153

H. Nmr, DMSO-d 6 ) ? 10.37 (s, 1H, H 1 ), 400 MHz, vol.9

, CH? 2 OH), 4.10-3.98 (m, 2H, CH? 2 CH 3 ), 2.29 (s, 3H, C 6 -CH? 3 ), 1.13 (t, 3H, J = 7.1 Hz, CH 2 CH? 3 ). 13 C NMR (100 MHz, DMSOd 6 ) ?, 5.24-5.17 (m, 2H, H 4 and OH), 4.33 (d, 2H, J = 5.5 Hz, vol.174

, (hydroxymethyl)furan-2?-yl]-2-methyl-1,4-dihydrobenzo

H. Nmr,

1. and 1. ,

D. Mhz, 145.5 (C 10a ), 142.2 (C 9a ), 131.6 (C 5a ), vol.151

H. Nmr,

, 16 (t, 1H, J = 5.8 Hz, OH), 4.26 (d, 2H, J = 5.8 Hz, CH? 2 OH), 4.10-3.92 (m, 2H, CH? 2 CH 3 ), 2.40 (s, 3H, C 5 -CH? 3 ), 1.11 (t, 3H, J = 7.1 Hz, CH 2 CH? 3 ). 13 C NMR (75 MHz, DMSO-d 6 ), HRMS (ESI) m/z: calcd for, vol.5

L. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty, F. D. Toste et al., Appl. Catal., A, vol.16, issue.2, p.548, 1499.

X. Zhang, P. Murria, Y. Jiang, W. Xiao, H. I. Kenttämaa et al., Green Chem, vol.18, p.5219, 2016.

R. Q. Fang, R. Luque, Y. W. Li-;-b, ). K. Ghosh, R. A. Molla et al., Appl. Catal., A, vol.18, p.64, 2014.

C. V. Nguyen, Y. Liao, T. Kang, J. E. Chen, T. Yoshikawa et al., Appl. Catal., A, vol.18, p.206, 2015.

L. Ardemani, G. Cibin, A. J. Dent, M. A. Isaacs, G. Kyriakou et al., Chem. Sci, vol.6, p.4940, 2015.

A. Villa, M. Schiavoni, S. Campisi, G. M. Veith, and L. Prati, ChemSusChem, issue.6, p.609, 2013.

S. Subbiah, S. P. Simeonov, J. M. Esperanca, L. P. Rebelo, and C. A. Afonso, Green Chem, 2013.

T. Komanoya, T. Kinemura, Y. Kita, K. Kamata, and M. Hara, J. Am. Chem. Soc, p.11493, 2017.

S. T?upova, F. Rominger, M. Rudolph, A. S. Hashmi, G. ;. Chem et al., Org. Biomol. Chem, vol.18, issue.5118, p.3746, 1255.

J. Zhu, Q. Wang, M. Wang, W. Gmbh, &. Co et al., Multicomponent Reactions in Organic Synthesis, b) Muticomponent Reactions, vol.114, p.8323, 2005.

A. Dömling, W. Wang, K. Wang, ;. E. Ruijter, R. Scheffelaar et al., Angew. Chem., Int. Ed, vol.112, p.507, 2011.

C. O. Kappe, Acc. Chem. Res, p.879, 2000.

C. O. Kappe, Tetrahedron, p.6937, 1993.

H. Xue, Y. Zhao, H. Wu, Z. Wang, B. Yang et al., J. Am. Chem. Soc, p.8690, 2016.

Y. Zhao, Y. Yu, Y. Zhang, X. Wang, B. Yang et al., Polym. Chem, vol.6, p.4940, 2013.

Y. Zhang, B. Wang, X. Zhang, J. Huang, C. Liu-;-b et al., Beilstein J. Org. Chem, vol.9, p.69238, 2005.

P. Shen, M. Xu, D. Yin, S. Xie, C. Zhou et al., Chem. Heterocycl. Compd, vol.77, issue.18, p.1000, 1383.

?. Gülten, J. Heterocycl. Chem, p.391, 2013.

J. T. Starcevich, T. J. Laughlin, R. S. Mohan, ;. Cepanec, M. Litvi? et al., Tetrahedron Lett, vol.54, p.7861, 1047.

H. Xu and Y. G. Wang, Chin. J. Chem, vol.21, p.327, 2003.

G. Maiti, P. Kundu, and C. Guin, Tetrahedron Lett, vol.44, p.4801, 2002.

J. Lu, H. R. Ma-;-j)-b, A. Ranu, U. Hajra, ;. Jana et al., J. Chem. Soc., Perkin Trans, vol.65, p.1022, 1999.

C. O. Kappe, J. Org. Chem, vol.62, p.7201, 1997.

K. Folkers and T. B. Johnson, J. Am. Chem. Soc, p.3784, 1933.

F. Sweet and J. D. Fissekis, J. Am. Chem. Soc, p.8741, 1973.

M. Puripat, R. Ramozzi, M. Hatanaka, W. Parasuk, V. Parasuk et al., J. Org. Chem, vol.80, p.3383, 2014.

L. M. Ramos, A. Y. Ponce-de-leon-y-tobio, M. R. Santos, H. C. De-oliveira, A. F. Gomes et al., J. Org. Chem, p.10184, 2012.

, Urea is produced from the following raw materials: natural gas, air and water. Acetylacetone can be produced from acetic acid and acetone, 105777511.