S. Lefebvre, Identification and characterization of a spinal muscular atrophy-determining gene, Cell, vol.80, pp.155-165, 1995.

P. J. Young, T. T. Le, N. Thi-man, A. H. Burghes, and G. E. Morris, The relationship between SMN, the spinal muscular atrophy protein, and nuclear coiled bodies in differentiated tissues and cultured cells, Exp. Cell Res, vol.256, pp.365-374, 2000.

C. Eggert, A. Chari, B. Laggerbauer, and U. Fischer, Spinal muscular atrophy: the RNP connection, Trends Mol. Med, vol.12, pp.113-121, 2006.

T. O. Crawford, Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study, PLoS ONE, vol.7, p.33572, 2012.

C. L. Lorson, E. Hahnen, E. J. Androphy, and B. Wirth, A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy, Proc. Natl Acad. Sci. USA, vol.96, pp.6307-6311, 1999.

A. H. Burghes and C. E. Beattie, Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?, Nat. Rev. Neurosci, vol.10, pp.597-609, 2009.

U. R. Monani, The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy, Hum. Mol. Genet, vol.9, pp.333-339, 2000.

N. A. Naryshkin, Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy, Science, vol.345, pp.688-693, 2014.

J. Palacino, SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice, Nat. Chem. Biol, vol.11, pp.511-517, 2015.

W. D. Arnold and A. H. Burghes, Spinal muscular atrophy: development and implementation of potential treatments, Ann. Neurol, vol.74, pp.348-362, 2013.

N. N. Singh, B. M. Lee, C. J. Didonato, and R. N. Singh, Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy, Future Med. Chem, vol.7, pp.1793-1808, 2015.

M. D. Howell, N. N. Singh, and R. N. Singh, Advances in therapeutic development for spinal muscular atrophy, Future Med. Chem, vol.6, pp.1081-1099, 2014.

C. Ydewalle and C. J. Sumner, Spinal muscular atrophy therapeutics: where do we stand?, Neurotherapeutics, vol.12, pp.303-316, 2015.

M. G. Woll, Discovery and optimization of small molecule splicing modifiers of survival motor neuron 2 as a treatment for spinal muscular atrophy, J. Med. Chem, vol.59, pp.6070-6085, 2016.

N. N. Singh and R. N. Singh, Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model, RNA Biol, vol.8, pp.600-606, 2011.

N. N. Singh, R. N. Singh, and E. J. Androphy, Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes, Nucleic Acids Res, vol.35, pp.371-389, 2007.

N. N. Singh, B. M. Lee, and R. N. Singh, Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions, Ann. N. Y. Acad. Sci, vol.1341, pp.176-187, 2015.

M. D. Disney, I. Yildirim, and J. L. Childs-disney, Methods to enable the design of bioactive small molecules targeting RNA, Org. Biomol. Chem, vol.12, pp.1029-1039, 2014.

L. Guan and M. D. Disney, Recent advances in developing small molecules targeting RNA, ACS Chem. Biol, vol.7, pp.73-86, 2012.

J. R. Thomas and P. J. Hergenrother, Targeting RNA with small molecules, Chem. Rev, vol.108, pp.1171-1224, 2008.

M. B. Warf and J. A. Berglund, Role of RNA structure in regulating pre-mRNA splicing, Trends Biochem. Sci, vol.35, pp.169-178, 2010.

J. M. Jean and K. B. Hall, 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking, Proc. Natl Acad. Sci. USA, vol.98, pp.37-41, 2001.

T. Tran and M. D. Disney, Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations, Nat. Commun, vol.3, p.1125, 2012.

P. N. Asare-okai and C. S. Chow, A modified fluorescent intercalator displacement assay for RNA ligand discovery, Anal. Biochem, vol.408, pp.269-276, 2011.

J. H. Zhang, T. D. Chung, and K. R. Oldenburg, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, J. Biomol. Screen, vol.4, pp.67-73, 1999.

M. L. Zhang, C. L. Lorson, E. J. Androphy, and J. Zhou, An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA, Gene Ther, vol.8, pp.1532-1538, 2001.

F. Mayer, Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila, J. Neurosci, vol.29, pp.3538-3550, 2009.

Y. B. Chan, Neuromuscular defects in a Drosophila survival motor neuron gene mutant, Hum. Mol. Genet, vol.12, pp.1367-1376, 2003.

Z. Zhang, SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing, Cell, vol.133, pp.585-600, 2008.

D. Baumer, Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy, PLoS Genet, vol.5, p.1000773, 2009.

Z. Zhang, Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy, Proc. Natl Acad. Sci. USA, vol.110, pp.19348-19353, 2013.

Q. Huo, Splicing changes in SMA mouse motoneurons and SMNdepleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins, RNA Biol, vol.11, pp.1430-1446, 2014.

C. W. Muller, G. J. Schlauderer, J. Reinstein, and G. E. Schulz, Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding, Structure, vol.4, pp.147-156, 1996.

P. J. Shepard and K. J. Hertel, Conserved RNA secondary structures promote alternative splicing, RNA, vol.14, pp.1463-1469, 2008.

M. M. Scotti and M. S. Swanson, RNA mis-splicing in disease, Nat. Rev. Genet, vol.17, pp.19-32, 2016.

A. G. Douglas and M. J. Wood, RNA splicing: disease and therapy, Brief Funct. Genom, vol.10, pp.151-164, 2011.

E. Buratti, Aberrant 5' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization, Nucleic Acids Res, vol.35, pp.4250-4263, 2007.

I. Vorechovsky, Aberrant 3' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization, Nucleic Acids Res, vol.34, pp.4630-4641, 2006.

J. Kralovicova, M. B. Christensen, and I. Vorechovsky, Biased exon/intron distribution of cryptic and de novo 3' splice sites, Nucleic Acids Res, vol.33, pp.4882-4898, 2005.

L. Varani, Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17, Proc. Natl Acad. Sci. USA, vol.96, pp.8229-8234, 1999.

P. A. Estes, N. E. Cooke, and S. A. Liebhaber, A native RNA secondary structure controls alternative splice-site selection and generates two human growth hormone isoforms, J. Biol. Chem, vol.267, pp.14902-14908, 1992.

Y. Luo and M. D. Disney, Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA, Chembiochemistry, vol.15, pp.2041-2044, 2014.

Y. Liu, L. Rodriguez, and M. S. Wolfe, Template-directed synthesis of a small molecule-antisense conjugate targeting an mRNA structure, Bioorg. Chem, vol.54, pp.7-11, 2014.

A. J. Orry, R. A. Abagyan, and C. N. Cavasotto, Structure-based development of target-specific compound libraries, Drug Discov. Today, vol.11, pp.261-266, 2006.

C. J. Harris, R. D. Hill, D. W. Sheppard, M. J. Slater, and P. F. Stouten, The design and application of target-focused compound libraries, Comb. Chem. High. Throughput Screen, vol.14, pp.521-531, 2011.

K. Bodoor, Design and implementation of an ribonucleic acid (RNA) directed fragment library, J. Med. Chem, vol.52, pp.3753-3761, 2009.

S. K. Custer, Altered mRNA splicing in SMN-depleted motor neuronlike cells, PLoS ONE, vol.11, p.163954, 2016.

G. Varani and W. H. Mcclain, The G×U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems, EMBO Rep, vol.1, pp.18-23, 2000.

J. Kralovicova, A. Patel, M. Searle, and I. Vorechovsky, The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat, RNA Biol, vol.12, pp.54-69, 2015.

A. Davidson, Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein, Proc. Natl Acad. Sci. USA, vol.106, pp.11931-11936, 2009.

M. D. Disney, Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts, Drug Discov. Today, vol.18, pp.1228-1236, 2013.

P. C. Gareiss, Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1), J. Am. Chem. Soc, vol.130, pp.16254-16261, 2008.

M. B. Warf, M. Nakamori, C. M. Matthys, C. A. Thornton, and J. A. Berglund, Pentamidine reverses the splicing defects associated with myotonic dystrophy, Proc. Natl Acad. Sci. USA, vol.106, pp.18551-18556, 2009.

S. P. Velagapudi, Design of a small molecule against an oncogenic noncoding RNA, Proc. Natl Acad. Sci. USA, vol.113, pp.5898-5903, 2016.

A. C. Stelzer, Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble, Nat. Chem. Biol, vol.7, pp.553-559, 2011.

N. N. Patwardhan, Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR, MedChemComm, vol.8, pp.1022-1036, 2017.