W. Cho and R. V. Stahelin, Membrane-protein interactions in cell signaling and membrane trafficking, Annu Rev Biophys Biomol Struct, vol.34, pp.119-151, 2005.

F. M. Goñi, Non-permanent proteins in membranes: when proteins come as visitors, Mol Membr Biol, vol.19, pp.237-245, 2002.

F. Dumas, M. C. Lebrun, and J. F. Tocanne, Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions?, FEBS Lett, vol.458, pp.271-277, 1999.

P. K. Kinnunen, A. Kõiv, J. Y. Lehtonen, M. Rytömaa, and P. Mustonen, Lipid dynamics and peripheral interactions of proteins with membrane surfaces, Chem Phys Lipids, vol.73, pp.181-207, 1994.

É. Boisselier, P. Calvez, É. Demers, L. Cantin, and C. Salesse, Influence of the physical state of phospholipid monolayers on protein binding, Langmuir, vol.28, pp.9680-9688, 2012.

P. Calvez, S. Bussières, D. Eric, and C. Salesse, Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers, Biochimie, vol.91, pp.718-733, 2009.

A. Bénarouche, V. Point, G. Parsiegla, F. Carrière, and J. F. Cavalier, New insights into the pH-dependent interfacial adsorption of dog gastric lipase using the monolayer technique, Colloids Surf B Biointerfaces, vol.111, pp.306-312, 2013.

P. Calvez, E. Demers, E. Boisselier, and C. Salesse, Analysis of the contribution of ACCEPTED MANUSCRIPT 17 saturated and polyunsaturated phospholipid monolayers to the binding of proteins, Langmuir, vol.27, pp.1373-1379, 2011.

P. Dynarowicz-latka, A. Dhanabalan, . On, and . Oliveira, Modern physicochemical research on Langmuir monolayers, vol.91, pp.221-293, 2001.

G. Brezesinski and H. Mohwald, Langmuir monolayers to study interactions at model membrane surfaces, Adv. Colloid Interface Sci, vol.100, pp.563-584, 2003.

F. Si-shen, Interpretation of mechanochemical properties of lipid bilayer vesicles from the equation of state or pressure-area measurement of the monolayer at the air-water or oil-water Interface, Langmuir, vol.15, pp.998-1010, 1999.

R. C. Macdonald and S. A. Simon, Lipid monolayer states and their relationships to bilayers, Proc. Natl. Acad. Sci, vol.84, pp.4089-4093, 1987.

F. Hasan, A. A. Shah, and A. Hameed, Industrial applications of microbial lipases, Enzyme Microb Technol, vol.39, pp.235-251, 2006.

K. E. Jaeger and T. Eggert, Lipases for biotechnology, vol.13, pp.390-397, 2002.

N. S. Rios, B. B. Pinheiro, M. P. Pinheiro, R. M. Bezerra, J. C. Santos et al., Biotechnological potential of lipases from Pseudomonas: sources, properties and applications, Process Biochem, vol.75, pp.99-120, 2018.

C. A. Voigt, W. Schäfer, and S. Salomon, A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals, Plant J, vol.42, pp.364-375, 2005.

Z. Lou, M. Li, and Y. Sun, Crystal structure of a secreted lipase from Gibberella zeae reveals a novel "double-lock" mechanism, Protein & cell, vol.1, pp.760-770, 2010.

D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow et al.,

. Goldman, The alpha/beta hydrolase fold, Protein Eng, vol.5, pp.197-211, 1992.

L. Brady, A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson et al.,

. Menge, A serine protease triad forms the catalytic centre of a triacylglycerol lipase, Nature, vol.343, pp.767-770, 1990.

F. Ferrato, F. Carriere, L. Sarda, and R. Verger, A critical reevaluation of the phenomenon of interfacial activation, Methods Enzymol, vol.286, pp.327-347, 1997.

R. Verger, Interfacial activation of lipase: facts and artifacts, Trends Biotechnol, vol.15, pp.32-38, 1997.

R. D. Schmid and R. Verger, Lipases: Interfacial Enzymes with Attractive Applications, vol.37, pp.1608-1633, 1998.

A. M. Brzozowski, U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson et al., A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature, vol.351, pp.491-494, 1991.

K. K. Kim, H. K. Song, D. H. Shin, K. Y. Hwang, and S. W. Suh, The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor, Structure, vol.5, pp.173-185, 1997.

F. H. Wang, H. Zhang, Z. X. Zhao, R. X. Wei, B. Yang et al., Recombinant Lipase from Gibberella zeae Exhibits Broad Substrate Specificity: A Comparative Study on Emulsified and Monomolecular Substrate, Int J Mol Sci, vol.18, p.1535, 2017.

F. H. Wang, H. Zhang, A. Czarna, W. C. Chen, B. Yang et al., Function of C-terminal peptides on enzymatic and interfacial adsorption properties of lipase from Gibberella zeae, Biochim Biophys Acta Gen Subj, vol.1862, 2018.

M. Van-kampen, W. Simons, and N. Dekker, The phospholipase activity of Staphylococcus hyicus lipase strongly depends on a single Ser to Val mutation, Chem Phys Lipids, vol.93, pp.39-45, 1998.

S. Bussie?res, L. Cantin, and B. Desbat, Binding of a truncated form of lecithin: retinol acyltransferase and its N-and C-terminal peptides to lipid monolayers, Langmuir, vol.28, pp.3516-3523, 2012.

Y. F. Shen, F. H. Wang, D. M. Lan, Y. Liu, B. Yang et al., Biochemical Properties and Potential Applications of Recombinant Leucine Aminopeptidase from Bacillus kaustophilus CCRC 11223, Int J Mol Sci, vol.12, p.7609, 2011.

B. A. Wallace, J. G. Lees, A. J. Orry, A. Lobley, and R. W. Janes, Analyses of circular dichroism spectra of membrane proteins, Protein Sci, vol.12, pp.875-884, 2003.

M. Lhor, S. C. Bernier, and H. Horchani, Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of protein, Adv Colloid Interface Sci, vol.207, pp.223-239, 2014.

W. E. Momsen and H. L. Brockman, The adsorption to and hydrolysis of 1, 3-didecanoyl glycerol monolayers by pancreatic lipase, Effects of substrate packing density, J Biol Chem, vol.256, pp.6913-6916, 1981.

W. E. Momsen, J. M. Smaby, and H. L. Brockman, Characterization of taurodeoxycholate-didecanoylglycerol monolayers by physical and kinetic methods, J Biol Chem, vol.254, pp.8855-8860, 1979.

J. P. Barque and D. G. Dervichian, Enzyme-substrate interaction in lipid monolayers. II. Binding and activity of lipase in relation to enzyme and substrate concentration and to other factors, J Lipid Res, vol.20, pp.447-455, 1979.

F. H. Wang, Z. X. Ning, D. M. Lan, Y. Y. Liu, B. Yang et al., Biochemical Properties of Recombinant Leucine Aminopeptidase II from Bacillus ACCEPTED MANUSCRIPT 20 stearothermophilus and Potential Applications in the Hydrolysis of Chinese Anchovy (Engraulis japonicus) Proteins, vol.60, 2012.