, (benzyl)(cholesteryl)phosphonato]-?-D-glucopyranoside, p.4

, EtOAc-pentane) afforded 4c (yield 70%) as a white solid, From cholesterol (79 mg) following general procedure, TLC monitoring using EtOAc-pentane 1:3 as eluent, flash chromatography of the crude product

. Mhz, ? (ppm) 139.5 (C=CH, Chol)

O. Hz, OCH 2 Ph), 69.0 (d, J C-P = 5.5 Hz, OCH 2 Ph), 77.8 (C4, C4'), 75.1 (C5, C5'), 75.0 (OCH 2 Ph), vol.74

, (benzyl)(5?-cholestan-3?-yl)phosphonato]-?-D-glucopyranoside, p.4

, EtOAc-pentane) afforded 4d (yield 74%) as a white solid, From 5?-cholestan-3?-ol (79 mg) following general procedure, TLC monitoring by TLC using EtOAc-pentane 1:3 as eluent, flash chromatography of the crude product

S. Beck-von-bodman, G. T. Hayman, and S. K. Farrand, Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor, Proc. Natl. Acad. Sci, vol.89, pp.643-647, 1992.

J. G. Ellis, A. Kerr, A. Petit, and J. Tempe, Conjugal transfer of nopaline and agropine Ti-plasmids-the role of agrocinopines, Mol. Gen. Genet, vol.186, pp.269-274, 1982.

J. S. Reader, P. T. Ordoukhanian, J. Kim, V. De-crécy-lagard, I. Hwang et al., Major biocontrol of plant tumors targets tRNA synthetase, Science, vol.309, p.1533, 2005.

W. P. Roberts, M. E. Tate, and A. Kerr, Agrocin 84 is a 6-N-phosphoramidate of an adenine nucleotide analogue, Nature, vol.265, pp.379-381, 1977.

R. J. Thompson, R. H. Hamilton, and C. F. Pootjes, Purification and characterization of agrocin 84, Antimicrob. Agents Chemother, vol.16, pp.293-296, 1979.

A. El-sahili, S. Li, J. Lang, C. Virus, S. Planamente et al., A pyranose-2-phosphate motif is responsible for both antibiotic import and quorum-sensing regulation in Agrobacterium tumefaciens, PLoS Pathog, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430779

S. Li, A. Vigouroux, M. Ahmar, A. El-sahili, L. Soulère et al., Synthesis of a non-natural glucose-2-phosphate ester able to dupe the acc system of Agrobacterium fabrum, Org. Biomol. Chem, vol.17, pp.1090-1096, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02173130

S. Mikkola, Hydrolysis and Isomerization of Sugar Phosphates and Carbohydrate Phosphodiesters, Curr. Org. Chem, vol.17, pp.1525-1544, 2013.

V. S. Tagliabracci, C. Heiss, C. Karthik, C. J. Contreras, J. Glushka et al., Phosphate incorporation during glycogen synthesis and Lafora disease, Cell Metab, vol.13, pp.274-282, 2011.

V. M. Chikwana, M. Khanna, S. Baskaran, V. S. Tagliabracci, C. J. Contreras et al., Structural basis for 2 -phosphate incorporation into glycogen by glycogen synthase, Proc. Natl. Acad. Sci, vol.110, pp.20976-20981, 2013.

L. E. Young, C. O. Brizzee, J. K. Macedo, R. D. Murphy, C. J. Contreras et al., Accurate and sensitive quantitation of glucose and glucose phosphates derived from storage carbohydrates by mass spectrometry, Carbohydr. Polym, 2020.

F. C. Kokesh, D. A. Cameron, Y. Kakuda, and P. V. Kuras, Hydrolysis of ?-d-glucopyranose 1, 2-cyclic phosphate: The effect of pH and temperature on the product distribution, and the position of opening of the phosphate diester ring in formation of d-glucose 2-phosphate, Carbohydr. Res, vol.62, pp.289-300, 1978.

F. C. Kokesh, R. K. Stephenson, and Y. Kakuda, Inibition of potato starch phosphorylase by ?-d-glucopyranose-1, 2-cyclic phosphate, Biochim. et Biophys. Acta, vol.483, pp.258-262, 1977.

T. Whiteside, L. Carreira, and S. Hilal, Estimation of phosphate ester hydrolysis rate constants. II. Acid and general base catalyzed hydrolysis, QSAR Comb. Sci, vol.26, pp.587-595, 2007.

K. R. Farrar, Glucose-2 phosphate: Its preparation and characterisation by hydrolysis studies, J. Chem. Soc, pp.3131-3135, 1949.

B. Roy, A. Depaix, C. Périgaud, and S. Peyrottes, Recent trends in nucleotide synthesis, Chem. Rev, vol.116, pp.7854-7897, 2016.

M. Lindberg and S. Oscarson, Synthesis of d-Glucos-2-yl Sucros-2-yl Phosphate (Agrocinopin C) and bis (d-glucos-2-yl) Phosphate (Agrocinopin D), J. Carbohydr. Chem, vol.12, pp.1139-1147, 1993.

B. C. Froehler and M. D. Matteucci, Nucleoside h-phosphonates: Valuable intermediates in the synthesis of deoxyoligonucleotides, Tetrahedron Lett, vol.27, pp.469-472, 1986.

J. Stawinski and M. Thelin, Studies on the activation pathway of phosphonic acid using acyl chlorides as activators, J. Chem. Soc. Perkin Trans, vol.2, pp.849-853, 1990.

M. Franzkowiak and J. Thiem, Synthesen von Agrocinopin A und B, Liebigs. Ann. Chem, vol.1987, pp.1065-1071

E. Hardegger and J. De-pascual, Glucoside und ?-1,3,4,6-Tetraacetyl-glucose aus Triacetyl-glucosan-?<1, 2> ?<1, 5>, Helv. Chim. Acta, vol.31, pp.281-286, 1948.

W. E. Dick and . Jr, Hydrolyses of intermediate acetoxonium ions derived from d-glucose, Carbohydr. Res, vol.21, pp.255-268, 1972.

B. Helferich and J. Zirner, Zur Synthese von Tetraacetyl-hexosen mit freiem 2-Hydroxyl, Synthese einiger Disaccharide. Chem. Ber, vol.95, pp.2604-2611, 1962.

T. Wang, S. S. Nigudkar, J. P. Yasomanee, N. P. Rath, K. J. Stine et al., Glycosyl nitrates in synthesis: Streamlined access to glucopyranose building blocks differentiated at C-2, Org. Biomol. Chem, vol.16, pp.3596-3604, 2018.

A. Lubineau and Y. Queneau, Stereochemical variations in aqueous cycloadditions using glyco-organic substrates as a consequence of chemical manipulations on the sugar moiety, Tetrahedron, vol.45, pp.6697-6712, 1989.

K. Suzuki, H. Nonaka, and M. Yamaura, Reductive Ring-Opening Reaction of 1, 2-O-Benzylidene and 1,2-O-p-Methoxybenzylidene-?-d-glucopyranose Using Diisobutyl Aluminum Hydride, J. Carbohydr. Chem, vol.23, pp.253-259, 2004.

T. Lecourt, A. Herault, A. J. Pearce, M. Sollogoub, and P. Sinaÿ, Triisobutylaluminium and diisobutylaluminium hydride as molecular scalpels: The regioselective stripping of perbenzylated sugars and cyclodextrins, Chem. Eur. J, vol.10, pp.2960-2971, 2004.

D. M. Gordon and S. J. Danishefsky, Displacement reactions of a 1,2-anhydro-?-d-hexopyranose: Installation of useful functionality at the anomeric carbon, Carbohydr. Res, vol.206, pp.361-366, 1990.

D. Somasundaram, K. K. Balasubramanain, and B. Shanmugasundaram, Simple and mild stereoselective O-glycosidation using 1, 2-anhydrosugars under neutral conditions, Tetrahedron Lett, vol.60, pp.764-767, 2019.

A. D. Barone, J. Tang, and M. H. Caruthers, In situ activation of bis-dialkylaminophosphines-a new method for synthesizing deoxyoligonucleotides on polymer supports, Nucleic Acids Res, vol.12, pp.4051-4061, 1984.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, Sample Availability: Not available. © 2020 by the authors. Licensee MDPI