G. W. Huber, S. Iborra, and A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev, vol.106, pp.4044-4098, 2006.

R. Mariscal, P. Maireles-torres, M. Ojeda, I. Sádaba, and M. L. Granados, Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels, Energ. Environ. Sci, vol.9, pp.1144-1189, 2016.

K. Yan, G. Wu, T. Lafleur, and C. Jarvis, , p.15

, hydrogenation of furfural to fuel additives and value-added chemicals, Renew. Sust. Energ. Rev, vol.38, pp.663-676, 2014.

Y. Lee, E. E. Kwon, and J. Lee, Polymers derived from hemicellulosic parts of lignocellulosic biomass, Rev. Environ. Sci. Bio, vol.18, pp.317-334, 2019.

M. J. Climent, A. Corma, and S. Iborra, Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels, Green Chem, vol.16, pp.516-547, 2014.

A. Mittal, S. K. Black, T. B. Vinzant, and D. K. Johnson, Production of furfural from process-relevant biomass-derived pentoses in a biphasic reaction system, ACS Sustainable Chem. Eng, vol.5, pp.5694-5701, 2017.

A. A. Rosatella, S. P. Simeonov, R. F. Frade, and C. A. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem, vol.13, pp.754-793, 2011.

J. G. De-vries, Green Syntheses of Heterocycles of Industrial Importance. 5-Hydroxymethylfurfural as a Platform Chemical, Advances in Heterocyclic Chemistry, 2017.

R. J. Van-putten, J. C. Van-der-waal, E. D. Jong, C. B. Rasrendra, H. J. Heeres et al., Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev, vol.113, pp.1499-1597, 2013.

F. A. Kucherov, L. V. Romashov, K. I. Galkin, and V. P. Ananikov, Chemical transformations of biomass-derived c6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks, ACS Sustainable Chem. Eng, vol.6, pp.8064-8092, 2018.

A. Farrán, C. Cai, M. Sandoval, Y. Xu, J. Liu et al., Green Solvents in Carbohydrate Chemistry: From Raw Materials to Fine Chemicals, Chem. Rev, vol.115, pp.6811-6853, 2015.

L. Hu, L. Lin, Z. Wu, S. Zhou, and S. Liu, Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renew. Sust. Energy. Rev, vol.74, pp.230-257, 2017.

H. Li, A. Riisager, S. Saravanamurugan, A. Pandey, R. S. Sangwan et al., Carbon-increasing catalytic strategies for upgrading biomass into energyintensive fuels and chemicals, ACS Catal, vol.8, pp.148-187, 2018.

M. J. Hülsey, H. Yang, and N. Yan, Sustainable routes for the synthesis of renewable heteroatom-containing chemicals, ACS Sustainable Chem. Eng, vol.6, p.5694, 2018.

*. P. Anastas and J. B. Zimmerman, The periodic table of the elements of green and sustainable chemistry, Green Chem, vol.21, pp.6545-6566, 2019.

A. Chatterjee, H. U. Xijun, and F. L. Lam, Modified coal fly ash waste as an efficient heterogeneous catalyst for dehydration of xylose to furfural in biphasic medium, Fuel, vol.239, pp.726-736, 2019.

X. Guo, F. Guo, Y. Li, Z. Zheng, Z. Xing et al., Dehydration of D-xylose into furfural over bimetallic salts of heteropolyacid in DMSO/H2O mixture, Appl. Catal. A, vol.558, pp.18-25, 2018.

A. Chatterjee, X. Hu, and F. L. Lam, Towards a recyclable MOF catalyst for efficient production of furfural, Catal. Today, vol.314, pp.129-136, 2018.

Y. Liu, C. Ma, C. Huang, Y. J. Fu, and . Chang, Efficient Conversion of Xylose into Furfural Using Sulfonic Acid-Functionalized Metal-Organic Frameworks in a Biphasic System, Ind. Eng. Chem. Res, vol.57, pp.16628-16634, 2018.

Q. Wang, W. Qi, W. Wang, Y. Zhang, N. Leksawasdi et al., Production of furfural with high yields from corncob under extremely low water/solid ratios, Renew. Energ, vol.144, pp.139-146, 2019.

J. N. Chheda, Y. Román-leshkov, and J. A. Dumesic, Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides, Green Chem, vol.9, pp.342-350, 2007.

L. Zhang, L. Tian, R. Sun, C. Liu, Q. Kou et al., Transformation of corncob into furfural by a bifunctional solid acid catalyst, Bioresour. Technol, vol.276, pp.60-64, 2019.

A. A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis et al., Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media, Appl. Catal. A-Gen, vol.555, pp.75-87, 2018.

A. R. Morais and R. Bogel-lukasik, Highly efficient and selective CO2-adjunctive dehydration of xylose to furfural in aqueous media with THF, Green Chem, vol.18, pp.2331-2334, 2016.

*. S. Jiang, C. Verrier, M. Ahmar, J. Lai, C. Ma et al., Unveiling the role of choline chloride in furfural synthesis from highly concentrated feeds of xylose, Green Chem, vol.20, p.17, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02127453

Z. Chen, X. Bai, A. Lusi, W. A. Jacoby, and C. Wan, One-pot Selective Conversion of Lignocellulosic Biomass into Furfural and Co-products Using Aqueous Choline Chloride/Methyl Isobutyl Ketone Biphasic Solvent System, Bioresour. Technol, vol.289, p.121708, 2019.

Y. Zhao, H. Xu, K. Wang, K. Lu, Y. Qu et al., Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanonewater solvent system, Sustain. Energy Fuels, vol.3, pp.3208-3218, 2019.

X. Bai, J. Li, C. Jia, J. Shao, Q. Yang et al., Preparation of furfural by catalytic pyrolysis of cellulose based on nano Na/Fe-solid acid, Fuel, vol.258, pp.116089-116096, 2019.

T. Yang, Y. H. Zhou, S. Z. Zhu, H. Pan, and Y. B. Huang, Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a ?-Valerolactone/Water Biphasic Solvent under Microwave Conditions, ChemSusChem, vol.10, pp.4066-4079, 2017.

B. Lee, T. Y. Wu, C. H. Ting, J. K. Tan, L. F. Siow et al.,

. Mohammad, One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions, Bioresour. Technol, vol.278, pp.486-489, 2019.

B. Seemala, V. Haritos, and A. Tanksale, Levulinic acid as a catalyst for the production of 5-hydroxymethylfurfural and furfural from lignocellulose biomass, ChemCatChem, vol.8, pp.640-647, 2016.

C. A. Bizzi, D. Santos, T. C. Sieben, G. V. Motta, P. A. Mello et al., Furfural production from lignocellulosic biomass by ultrasound-assisted acid hydrolysis, Ultrason. Sonochem, vol.51, pp.332-339, 2019.

M. Chatterjee, T. Ishizaka, and H. Kawanami, Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach, Green Chem, vol.18, pp.487-496, 2016.

A. Dunbabin, F. Subrizi, J. M. Ward, T. D. Sheppard, and H. C. Hailes, Furfurylamines from biomass: transaminase catalyzed upgrading of furfurals, Green Chem, vol.19, pp.397-404, 2017.

Z. Yuan, B. Liu, P. Zhou, Z. Zhang, and Q. Chi, Preparation of nitrogen-doped carbon supported cobalt catalysts and its application in the reductive amination, J. Catal, vol.370, pp.347-356, 2019.

*. I. Scodeller, S. Mansouri, D. Morvan, E. Muller, K. D. Vigier et al., Synthesis of Renewable meta-Xylylenediamine from Biomass-Derived Furfural, vol.57, pp.10510-10514, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02153718

S. Jiang, E. Muller, F. Jerôme, M. Pera-titus, and K. D. Vigier, Conversion of furfural to tetrahydrofuran-derived secondary amines under mild conditions, Green Chem, vol.22, pp.1832-1836, 2020.

S. Jiang, C. Ma, E. Muller, M. Pera-titus, F. Jérôme et al., Selective synthesis of THF-derived amines from biomass-derived carbonyl compounds, ACS Catal, vol.9, pp.8893-8902, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02331617

*. L. Kipshagen, L. T. Vömel, M. A. Liauw, A. Klemmer, A. Schulz et al.,

R. Hausoul and . Palkovits, Anionic surfactants based on intermediates of carbohydrate conversion, Green Chem, vol.21, pp.3882-3890, 2019.

M. Li, X. Dong, N. Zhang, F. Jérôme, and Y. Gu, Eco-efficient synthesis of 2-quinaldic acids from furfural, Green Chem, vol.21, pp.4650-4655, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02331614

D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass, Green Chem, vol.15, pp.584-595, 2013.

Y. Gu and F. Jérôme, Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry, Chem. Soc. Rev, vol.42, pp.9550-9570, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00967377

V. Pace, P. Hoyos, L. Castoldi, P. Dominguez-de-maria, and A. R. Alcantara, 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry, ChemSusChem, issue.5, pp.1369-1379, 2012.

J. N. Tan, M. Ahmar, and Y. Queneau, Bio-based solvents for the Baylis-Hillman reaction of HMF, RSC Adv, vol.5, pp.69238-69242, 2015.

W. Fan, Y. Queneau, and F. Popowycz, The synthesis of HMF-based ?-amino phosphonates via one-pot Kabachnik-Fields reaction, RSC Adv, vol.8, pp.31496-31501, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02110522

R. Albilali, M. Douthwaite, Q. He, and S. H. Taylor, The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by solimmobilisation: effect of catalyst support and reaction conditions, Catal. Sci. Technol, vol.8, pp.252-267, 2018.

N. Cherkasov, A. J. Expósito, M. S. Awz, J. Fernández-garcía, S. Huband et al., , p.19

L. Paniwnyk and E. V. Rebrov, Active site isolation in bismuth-poisoned Pd/SiO2 catalysts for selective hydrogenation of furfural, Appl. Catal. A, vol.570, pp.183-191, 2019.

M. D. Astuti, D. R. Mujiyanti, U. T. Santoso, and S. Shimazu, Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural, Mol. Catal, vol.445, pp.52-60, 2018.

Z. Li, X. Wei, G. Liu, X. Meng, Z. Yang et al., Highly selective hydrogenation of furfural and levulinic acid over Ni0.09Zn/NC600 derived from ZIFW-8, Mol. Catal, vol.480, pp.110651-110657, 2020.

F. Dong, Y. Zhu, G. Ding, J. Cui, X. Li et al., One-step conversion of furfural into 2-methyltetrahydrofuran under mild conditions, ChemSusChem, vol.8, pp.1534-1537, 2015.

X. Huang, S. Kudo, J. Sperry, and J. I. Hayashi, Clean Synthesis of 5-Hydroxymethylfurfural and Levulinic Acid by Aqueous Phase Conversion of Levoglucosenone over Solid Acid Catalysts, ACS Sustainable Chem. Eng, vol.7, pp.5892-5829, 2019.

*. S. Marullo, C. Rizzo, and F. , Activity of a Heterogeneous Catalyst in Deep Eutectic Solvents: The Case of Carbohydrate Conversion into 5-Hydroxymethylfurfural, ACS Sustainable Chem. Eng, vol.7, pp.13359-13368, 2019.

S. Xu, C. Yin, D. Pan, F. Hu, Y. Wu et al., Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe 3+ modified Amberlyst-15 catalyst, Sustain. Energy Fuels, vol.3, pp.390-395, 2019.

Y. Feng, G. Yan, T. Wang, W. Jia, X. Zeng et al.,

. Lin, Synthesis of MCM-41-Supported Metal Catalysts in Deep Eutectic Solvent for the Conversion of Carbohydrates into 5-Hydroxymethylfurfural, ChemSusChem, vol.12, pp.978-982, 2019.

M. M. Songo, R. Moutloali, and S. S. Ray, Development of TiO2-Carbon Composite Acid Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural, Catalysts, vol.9, pp.126-140, 2019.

M. Nahavandi, T. Kasanneni, Z. S. Yuan, C. C. Xu, and S. Rohani, Efficient Conversion of Glucose into 5-hydroxymethylfurfural using a Sulfonated Carbon-based Solid Acid Catalyst: An Experimental and Numerical Study

. Eng, , vol.7, pp.11970-11984, 2019.

Z. Cao, Z. Fan, Y. Chen, M. Li, T. Shen et al., Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates, Appl. Catal. B, vol.244, pp.170-177, 2019.

N. R. Peela, S. K. Yedla, B. Velaga, A. Kumar, and A. K. Golder, Choline chloride functionalized zeolites for the conversion of biomass derivatives to 5-hydroxymethylfurfural, Appl. Catal. A, vol.580, pp.59-70, 2019.

C. Wang, Q. Liang, F. Zhang, and . Zhang, Synergistic Catalysis of Brønsted Acid and Lewis Acid Coexisted on Ordered Mesoporous Resin for One-Pot Conversion of Glucose to 5-Hydroxymethylfurfural, ACS Omega, vol.4, pp.1053-1059, 2019.

*. Y. Feng, M. Li, Z. Gao, X. Zhang, X. Zeng et al., Development of Betaine-Based Sustainable Catalysts for Green Conversion of Carbohydrates and Biomass into 5-Hydroxymethylfurfural, ChemSusChem, vol.12, pp.495-502, 2019.

Q. Wu, G. Zhang, M. Gao, S. Cao, L. Li et al., Clean production of 5-hydroxymethylfurfural from cellulose using a hydrothermal/biomass-based carbon catalyst, J. Clean. Prod, vol.213, pp.1096-1102, 2019.

R. J. Ganado, D. E. Yu, and F. C. Franco, Microwave-Assisted Conversion of Simple Sugars and Waste Coffee Grounds into 5-Hydroxymethylfurfural in a Highly Aqueous DMSO Solvent System Catalyzed by a Combination of Al(NO3)3 and H2SO4, Ind. Eng. Chem. Res, vol.58, pp.14621-14631, 2019.

M. Cao, J. Ma, Y. Liu, H. Yang, X. Liu et al., Highly effective transformation of carbohydrates to 5-Hydroxymethylfurfural with

, Al-montmorillonite as catalyst, Appl. Catal. A, vol.571, pp.96-101, 2019.

R. Yan, H. Ma, L. Wei, B. Li, Y. Zou et al., Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system, Bioresour. Technol, vol.279, pp.84-91, 2019.

H. Lin, Q. Xiong, Y. Zhao, J. Chen, and S. Wang, Conversion of carbohydrates into 5-hydroxymethylfurfural in a green reaction system of CO2 water-isopropanol, AIChE J, vol.63, pp.257-265, 2017.

H. Labauze, S. Camy, P. Floquet, B. Benjelloun-mlayah, and J. S. Condoret, Kinetic study of 5-Hydroxymethylfurfural synthesis from fructose in high pressure CO2-Water two-phase system, Ind. Eng. Chem. Res, vol.58, pp.92-100, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02135793

X. Li, Y. Wang, X. Xie, C. Huang, and S. Yang, Dehydration of fructose, sucrose and inulin to 5-hydroxymethylfurfural over yeast-derived carbonaceous microspheres at low temperatures, RSC Adv, vol.9, pp.9041-9048, 2019.

P. V. Rathod, R. B. Mujmule, W. J. Chung, A. R. Jadhav, and H. Kim, Efficient Dehydration of Glucose, Sucrose, and Fructose to 5-Hydroxymethylfurfural Using Tri-cationic Ionic Liquids, Catal. Lett, vol.149, pp.672-687, 2019.

A. Mukherjee, M. J. Dumont, and A. Cherestes, Production of 5-Hydroxymethylfurfural from Starch through an Environmentally-Friendly Synthesis Pathway, Catal. Lett, vol.149, pp.283-291, 2019.

*. R. Gomes, Y. N. Mitrev, S. P. Simeonov, and C. A. Afonso, Going Beyond the Limits of the Biorenewable Platform: Sodium Dithionite-Promoted Stabilization of 5-Hydroxymethylfurfural, vol.11, pp.1612-1616, 2018.

*. M. Whitaker, A. Parulkar, P. Ranadive, R. Joshi, and N. A. Brunelli, Examining Acid Formation During the Selective Dehydration of Fructose to 5-Hydroxymethylfurfural in Dimethyl Sulfoxide and Water, ChemSusChem, vol.12, pp.2211-2219, 2019.

*. W. Fan, Y. Queneau, and F. Popowycz, HMF in multicomponent reactions: utilization of 5-hydroxymethylfurfural (HMF) in the Biginelli reaction, Green Chem, vol.20, pp.485-492, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02110673

C. Verrier, S. Moebs-sanchez, Y. Queneau, and F. Popowycz, The Piancatelli reaction and its variants: recent applications to high added-value chemicals and biomass valorization, Org. Biomol. Chem, vol.16, pp.676-687, 2018.

W. Fan, C. Verrier, Y. Queneau, and F. Popowycz, Hydroxymethylfurfural (HMF) in organic synthesis: a review of its recent applications towards fine chemicals, vol.5, pp.583-614, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02193105

E. J. Van-zandvoort, M. Koers, P. C. Weingarth, M. Bruijnincx, B. M. Baldus et al., Structural characterization of 13 C-enriched humins and alkali, p.13

, C humins by 2D solid-state NMR, Green Chem, vol.17, pp.4383-4392, 2015.

S. K. Patil, J. Heltzel, and C. R. Lund, Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde, Energ. Fuel, vol.26, pp.5281-5293, 2012.

G. Tsilomelekis, M. J. Orella, Z. Lin, Z. Cheng, W. Zheng et al., Molecular structure, morphology and growth mechanisms and rates of 5-22 hydroxymethyl furfural (HMF) derived humins, vol.18, pp.1983-1993, 2016.

T. M. Hoang, E. R. Van-eck, W. P. Bula, J. G. Gardeniers, L. Lefferts et al., Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production, Green Chem, vol.17, pp.959-972, 2015.

*. V. Maruani, S. Narayanin-richenapin, E. Framery, and B. Andrioletti, Acidic hydrothermal dehydration of D-glucose into humins: Identification and characterization of intermediates, ACS Sustainable Chem. Eng, vol.6, pp.13487-13493, 2018.

K. F. Schade, D. Kalz, W. Neukum, J. D. Kleist, and . Grunwaldt, Supported gold-and silver-based catalysts for the selective aerobic oxidation of 5-(hydroxymethyl) furfural to 2, 5-furandicarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid, Green Chem, vol.20, pp.3530-3541, 2018.

J. An, G. Sun, and H. Xia, Aerobic Oxidation of 5-Hydroxymethylfurfural to High-Yield 5-Hydroxymethyl-2-furancarboxylic Acid by Poly

, Capped Ag Nanoparticle Catalysts, ACS Sustainable Chem. Eng, vol.7, pp.6696-6706, 2019.

W. Chen, Z. Yang, S. Gui, A. Saravanamurugan, W. Riisager et al., MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into, vol.2, pp.105-112, 2019.

Q. Ke, Y. Jin, F. Ruan, M. N. Ha, D. Li et al., Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over nitrogen-doped manganese oxide catalysts, Green Chem, vol.21, pp.4313-4318, 2019.

Q. Wu, Y. He, H. Zhang, Z. Feng, Y. Wu et al., Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light, Mol. Catal, vol.436, pp.10-18, 2017.

D. A. Giannakoudakis, V. Nair, A. Khan, E. A. Deliyanni, J. C. Colmenares et al.,

. Triantafyllidis, Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods, Appl. Catal. B-Environ, vol.256, pp.117803-117812, 2019.

M. Ventura, A. Aresta, and . Dibenedetto, Selective Aerobic Oxidation of 5-(Hydroxymethyl) furfural to 5-Formyl-2-furancarboxylic Acid in Water, ChemSusChem, vol.9, pp.1096-1100, 2016.

*. C. Chen, C. V. Nguyen, Z. Y. Wang, Y. Bando, Y. Yamauchi et al., Hydrogen Peroxide Assisted Selective Oxidation of 5-Hydroxymethylfurfural in Water under Mild Conditions, vol.10, pp.361-365, 2018.

A. Da-fonseca-ferreira, M. Dorneles-de-mello, and M. A. Da-silva, Catalytic Oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Ru/Al2O3 in a Trickle-bed Reactor, Ind. Eng. Chem. Res, vol.58, pp.128-137, 2018.

*. E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai et al., Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, J. Am. Chem. Soc, vol.141, pp.890-900, 2019.

R. Chen, J. Xin, D. Yan, H. Dong, X. Lu et al., Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic Acid with Heteropoly Acids, ChemSusChem, vol.12, pp.2715-2724, 2019.

S. Xu, P. Zhou, Z. Zhang, C. Yang, B. Zhang et al., Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4, J. Am. Chem. Soc, vol.139, pp.14775-14782, 2017.

*. J. Liu, L. Dang, Z. Xu, H. Q. Yu, S. Jin et al., Electrochemical oxidation of 5-Hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts, vol.8, pp.5533-5541, 2018.

*. S. Barwe, J. Weidner, S. Cychy, D. M. Morales, S. Dieckhöfer et al., Electrocatalytic Oxidation of 5-(Hydroxymethyl) furfural Using High-Surface-Area Nickel Boride, Angew. Chem. Int. Ed, vol.57, pp.11460-11464, 2018.

X. Zhang, X. Sheng, Z. Chen, J. Fang, M. Jiang et al., Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source, Angew. Chem. Int. Ed, vol.58, pp.9155-9159, 2019.

*. B. Taitt, D. H. Nam, and K. S. Choi, A comparative study of nickel, cobalt, and iron, p.24

, oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid, ACS Catal, vol.9, pp.660-670, 2018.

A. C. Cardiel, B. J. Taitt, and K. S. Choi, Stabilities, Regeneration Pathways, and Electrocatalytic Properties of Nitroxyl Radicals for the Electrochemical Oxidation of 5-Hydroxymethylfurfural, vol.7, pp.11138-11149, 2019.

Z. Gao, J. Liu, L. Ma, Z. Zhong, J. Song et al., NiSe@ NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid, Appl. Catal. B-Environ, vol.261, pp.118235-118242, 2020.

X. Huang, J. Song, M. Hua, Z. Xie, S. Liu et al., Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies, Green Chem, vol.22, pp.843-849, 2020.

*. A. Salazar, P. Hünemörder, J. Rabeah, A. Quade, R. V. Jagadeesh et al., Synergetic Bimetallic Oxidative Esterification of 5-hydroxymethylfurfural (HMF) under mild conditions, ACS Sustainable Chem. Eng, vol.7, pp.12061-12068, 2019.

W. P. Dijkman and M. W. Fraaije, Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688, Appl. Environ. Microb, vol.80, pp.1082-1090, 2014.

W. P. Dijkman, D. E. Groothuis, and M. W. Fraaije, Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2, 5-dicarboxylic acid, Angew. Chem. Intern. Ed, vol.53, pp.6515-6518, 2014.

Y. Z. Qin, Y. M. Li, M. H. Zong, H. Wu, and N. Li, Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2, 5-diformylfuran using deep eutectic solvents, Green Chem, vol.17, pp.3718-3722, 2015.

S. M. Mckenna, P. Mines, P. Law, K. Kovacs-schreiner, W. R. Birmingham et al.,

S. Turner, A. J. Leimkühler, and . Carnell, The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC), Green Chem, vol.19, pp.4660-4665, 2017.

C. Zhang, X. Chang, L. Zhu, Q. Xing, S. You et al., Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF, Int. J. Biol. Macromol, vol.128, pp.132-139, 2019.

A. Rothamer and J. H. Jennings, Study of the knocking propensity of 2, 5-dimethylfuran-gasoline and ethanol-gasoline blends, Fuel, vol.98, pp.203-212, 2012.

S. Nishimura, N. Ikeda, and K. Ebitani, Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported Pd-Au bimetallic catalyst, Catal. Today, vol.232, pp.89-98, 2014.

X. Wang, X. Liang, J. Li, and Q. Li, Catalytic hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to biofuel 2, 5-dimethylfuran, Appl. Catal. A, vol.576, pp.85-95, 2019.

Z. An, W. Wang, S. Dong, and J. He, Well-distributed cobalt-based catalysts derived from layered double hydroxides for efficient selective hydrogenation of 5-hydroxymethyfurfural to 2, 5-methylfuran, Catal. Today, vol.319, pp.128-138, 2019.

F. Yang, J. Mao, S. Li, J. Yin, J. Zhou et al., Cobalt-graphene nanomaterial as an efficient catalyst for selective hydrogenation of 5-hydroxymethylfurfural into 2, 5-dimethylfuran, Catal. Sci. Technol, vol.9, pp.1329-1333, 2019.

J. Li, J. L. Liu, H. Y. Liu, G. Y. Xu, J. J. Zhang et al., Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran over Heterogeneous Iron Catalysts, ChemSusChem, vol.10, pp.1436-1447, 2017.

B. S. Solanki and C. V. Rode, Selective hydrogenation of 5-HMF to 2, 5-DMF over a magnetically recoverable non-noble metal catalyst, Green Chem, vol.21, pp.6390-6406, 2019.

C. Sarkar, P. Koley, I. Shown, J. Lee, Y. F. Liao et al.,

J. Chen, Integration of Interfacial and Alloy Effects to Modulate Catalytic Performance of Metal-Organic-Framework-Derived Cu-Pd Nanocrystals toward Hydrogenolysis of 5-Hydroxymethylfurfural, ACS Sustainable Chem. Eng, vol.7, pp.10349-10362, 2019.

*. J. Asensio, A. B. Miguel, P. F. Fazzini, P. W. Van-leeuwen, and B. Chaudret, Hydrodeoxygenation Using Magnetic Induction: High-Temperature
URL : https://hal.archives-ouvertes.fr/hal-02154800

, Heterogeneous Catalysis in Solution, Angew. Chem. Int. Ed, vol.58, pp.11306-11310, 2019.

R. Insyani, D. Verma, H. S. Cahyadi, S. M. Kim, S. K. Kim et al., One-pot di-and polysaccharides conversion to highly selective 2, 5-dimethylfuran over Cu-Pd/Amino-functionalized Zr-based metal-organic framework

@. Sgo and . Catalyst, Appl. Catal. B, vol.243, pp.337-354, 2019.

*. Y. Zhang, B. Wang, L. Qin, Q. Li, and Y. Fan, A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural, Green Chem, vol.21, pp.1108-1113, 2019.

S. Chen, C. Ciotonea, K. D. Vigier, F. Jérôme, R. Wojcieszak et al.,

/. Ni and . Sba-15, ChemCatChem, vol.12, pp.2050-2059, 2020.

T. Komanoya, T. Kinemura, Y. Kita, K. Kamata, and M. Hara, Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds, J. Am. Chem. Soc, vol.139, pp.11493-11499, 2017.

D. Pingen, J. B. Schwaderer, J. Walter, J. Wen, G. Murray et al., Diamines for Polymer Materials via Direct Amination of Lipid-and Lignocellulosebased Alcohols with NH3, ChemCatChem, vol.10, pp.3027-3033, 2018.

*. K. Zhou, H. Liu, H. Shu, S. Xiao, D. Guo et al., A comprehensive study on the reductive amination of 5-hydroxymethylfurfural into 2, 5-bisaminomethylfuran over Raney Ni through DFT calculations, ChemCatChem, vol.11, pp.2649-2656, 2019.

Y. Liu, K. Zhou, H. Shu, H. Liu, J. Lou et al., Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over Raney nickel, Catal. Sci. Technol, vol.7, pp.4129-4135, 2017.

S. Zhang, G. Shen, Z. Chen, and G. Yin, Accessing the HMF derivatives from furfural acetate through oxidative carbonylation, Chemistry Select, vol.2, pp.7096-7099, 2017.

G. Shen, S. Zhang, Y. Lei, Z. Chen, and G. Yin, Synthesis of 2, 5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid, Mol. Catal, vol.455, pp.204-209, 2018.

G. Shen, S. Zhang, Y. Lei, J. Shi, Y. Xia et al., Catalytic carbonylation of renewable furfural derived 5-bromofurfural to 5-formyl-2-furancarboxylic acid in oil/aqueous bi-phase system, Mol. Catal, vol.463, pp.94-98, 2019.

*. G. Shen, J. Shi, Y. Lei, Z. Chen, B. Andrioletti et al., Aqueous Carbonylation of Furfural Derived 5-Bromofuroic Acid to 2, 5-Furandicarboxylic Acid with Supported Palladium Catalyst, Ind. Eng. Chem. Res, vol.58, pp.22951-22957, 2019.

V. Choudhary, S. H. Mushrif, C. Ho, A. Anderko, V. Nikolakis et al., , p.27

, Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media, J. Am. Chem. Soc, vol.135, pp.3997-4006, 2013.

H. Ren, B. Girisuta, Y. Zhou, and L. Liu, Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid, Carbohyd. Polym, vol.117, pp.569-576, 2015.

*. Y. Peng, X. Li, T. Gao, T. Li, and W. Yang, Preparation of 5-methylfurfural from starch in one step by iodide mediated metal-free hydrogenolysis, Green Chem, vol.21, pp.4169-4177, 2019.

G. K. Beh, C. T. Wang, K. Kim, J. Qu, J. Cairney et al., Flame-made amorphous solid acids with tunable acidity for the aqueous conversion of glucose to levulinic acid, Green Chem, vol.22, pp.688-698, 2020.

A. Chappaz, J. Lai, K. D. Vigier, D. Morvan, R. Wischert et al., Selective Conversion of Concentrated Feeds of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Metal Triflates, ACS Sustainable Chem. Eng, vol.6, pp.4405-4411, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02149611

S. S. Chen, L. Wang, K. M. Iris, D. C. Tsang, A. J. Hunt et al.,

O. C. Poon, Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous Brønsted acid, Bioresource technol, vol.247, pp.387-394, 2018.

*. A. Ledoux, L. S. Kuigwa, E. Framery, and B. Andrioletti, A highly sustainable route to pyrrolidone derivatives-direct access to biosourced solvents, Green Chem, vol.17, pp.3251-3254, 2015.

Y. Ogiwara, T. Uchiyama, and N. Sakai, Reductive amination/cyclization of keto acids using a hydrosilane for selective production of lactams versus cyclic amines by switching of the indium catalyst, Angew. Chem. Int. Ed, vol.55, pp.1864-1867, 2016.

*. C. Xie, J. Song, H. Wu, Y. Hu, H. Liu et al., Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts on Porous TiO2 Nanosheets, J. Am. Chem. Soc, vol.141, pp.4002-4009, 2019.

K. Tadele, S. Verma, M. A. Gonzalez, and R. S. Varma, A sustainable approach to empower the bio-based future: upgrading of biomass via process intensification, p.28

, Green Chem, vol.19, pp.1624-1627, 2017.

M. G. Al-shaal, M. Calin, I. Delidovich, and R. Palkovits, Microwave-assisted reduction of levulinic acid with alcohols producing ?-valerolactone in the presence of a Ru/C catalyst, Catal. Commun, vol.75, pp.65-68, 2016.

I. Obregón, M. G. Gandarias, C. Al-shaal, P. L. Mevissen, R. Arias et al., The role of the hydrogen source on the selective production of ?-valerolactone and 2-methyltetrahydrofuran from levulinic acid, ChemSusChem, vol.9, pp.2488-2495, 2016.

L. Negahdar, M. G. Al-shaal, F. J. Holzhäuser, and R. Palkovits, Kinetic analysis of the catalytic hydrogenation of alkyl levulinates to ?-valerolactone, Chem. Eng. Sci, vol.158, pp.545-551, 2017.

*. F. Holzhäuser, J. B. Mensah, and R. Palkovits, Non-) Kolbe electrolysis in biomass valorization-a discussion of potential applications, Green Chem, vol.22, pp.286-301, 2020.

F. M. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer et al.,

. Leitner, Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system, Angew. Chem. Int. Ed, vol.49, pp.5510-5514, 2010.

*. , P. T. Anastas, and J. B. Zimmerman, Anastas and Zimmerman share their vision of green and sustainable chemistry, which is one element at the intersection of several others, including economic, Green Chem, vol.21, pp.6545-6566, 2019.

S. *25, C. Jiang, M. Verrier, J. Ahmar, C. Lai et al.,

F. Titus, K. Jerome, . De-oliveira, and . Vigier, Unveiling the role of choline chloride in furfural synthesis from highly concentrated feeds of xylose, Green Chem, vol.20, pp.5104-5110, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02127453

, Vigier and coworkers showed that the use of the biphasic mixture of aqueous choline chloride (ChClaq) and MIBK led to 75% isolated yield of furfural with 50 wt% conversion of a concentrated xylose feed. They suggested the stabilization of both xylose and furfural by the solvent system and the implication of an intermediate choline xyloside exhibiting a faster dehydration than xylose

I. *36, S. Scodeller, D. Mansouri, E. Morvan, K. D. Muller et al.,

. Jérôme, A smart strategy based on a cycloaddition -aromatization sequence offers a general access to aminated xylenes, useful scaffolds in fine chemistry, Synthesis of Renewable meta-Xylylenediamine from Biomass-Derived Furfural, vol.57, pp.10510-10514, 2018.

*. L. Kipshagen, L. T. Vömel, M. A. Liauw, A. Klemmer, A. Schulz et al.,

R. Hausoul and . Palkovits, This paper illustrates the interest of furfural and HMF derivatives in the design of bio-based surfactants, Green Chem, vol.21, pp.3882-3890, 2019.

S. *52, C. Marullo, and F. Rizzo, Activity of a Heterogeneous Catalyst in Deep Eutectic Solvents: The Case of Carbohydrate Conversion into 5-Hydroxymethylfurfural, ACS Sustainable Chem. Eng, vol.7, pp.13359-13368, 2019.

Y. *60, M. Feng, Z. Li, X. Gao, X. Zhang et al., Development of Betaine-Based Sustainable Catalysts for Green Conversion of Carbohydrates and Biomass into 5-Hydroxymethylfurfural, ChemSusChem, vol.12, p.30, 2019.

, Some bio-based catalysts, such as betaine-based catalysts reported by Zeng and co-workers, afford 5-HMF in up to 88% yield from fructose, glucose, cellulose and lignocellulosic materials, pp.495-502

*. , R. F. Gomes, Y. N. Mitrev, S. P. Simeonov, and C. A. Afonso, Going Beyond the Limits of the Biorenewable Platform: Sodium Dithionite-Promoted Stabilization of 5-Hydroxymethylfurfural, vol.11, pp.1612-1616, 2018.

*. , M. R. Whitaker, A. Parulkar, P. Ranadive, R. Joshi et al., Examining Acid Formation During the Selective Dehydration of Fructose to 5-Hydroxymethylfurfural in Dimethyl Sulfoxide and Water, ChemSusChem, vol.12, pp.2211-2219, 2019.

W. *72, Y. Fan, F. Queneau, and . Popowycz, HMF in multicomponent reactions: utilization of 5-hydroxymethylfurfural (HMF) in the Biginelli reaction, Green Chem, vol.20, 2018.

V. *79, S. Maruani, E. Narayanin-richenapin, B. Framery, and . Andrioletti, Acidic hydrothermal dehydration of D-glucose into humins: Identification and characterization of intermediates, ACS Sustainable Chem. Eng, vol.6, pp.13487-13493, 2018.

*. , C. T. Chen, C. V. Nguyen, Z. Y. Wang, Y. Bando et al., Hydrogen Peroxide Assisted Selective Oxidation of 5-Hydroxymethylfurfural in Water under Mild Conditions, vol.10, p.361, 2018.

E. *89, Y. Hayashi, K. Yamaguchi, N. Kamata, Y. Tsunoda et al.,

. Hara, Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural, p.31

, Hara and coll. used a MnO2/NaHCO3 combination using O2 as the sole oxidant in water to selectively prepare FDCA in 86% yield from HMF, J. Am. Chem. Soc, vol.2, pp.890-900, 2019.

J. *92, L. Liu, Z. Dang, H. Q. Xu, S. Yu et al., Jin and co-workers demonstrate that electrochemical processes are efficient an alternative for the oxidation of HMF. They used a bimetallic NiFe-based catalyst as the anode for the electrochemical oxidation of a highly concentrated solution of HMF to FDCA, ACS Catal, vol.8, pp.5533-5541, 2018.

S. *93, J. Barwe, S. Weidner, D. M. Cychy, S. Morales et al., Electrocatalytic Oxidation of 5-(Hydroxymethyl) furfural

, Using High-Surface-Area Nickel Boride, Angew. Chem. Int. Ed, vol.57, p.11460, 2018.

P. *94, X. Zhang, X. Sheng, Z. Chen, J. Fang et al., Sun and coll. showed that NiBx displayed excellent conversion, selectivity and faradaic efficiency values at both the anode and the cathode simultaneously using water as the oxygen and hydrogen source, Angew. Chem. Int. Ed, vol.58, pp.9155-9159, 2019.

*. , B. J. Taitt, D. H. Nam, and K. S. Choi, A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid, ACS Catal, vol.9, pp.660-670, 2018.

A. *99, P. Salazar, J. Hünemörder, A. Rabeah, R. V. Quade et al., Synergetic Bimetallic Oxidative Esterification of 5-hydroxymethylfurfural (HMF) under mild conditions, ACS Sustainable Chem. Eng, vol.7, pp.12061-12068, 2019.

*. , J. M. Asensio, A. B. Miguel, P. F. Fazzini, P. W. Van-leeuwen et al., Hydrodeoxygenation Using Magnetic Induction: High-Temperature Heterogeneous Catalysis in Solution, Angew. Chem. Int. Ed, vol.58, pp.11306-11310, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02154800

Y. *115, B. Zhang, L. Wang, Q. Qin, Y. Li et al., A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural, Green Chem, vol.21, pp.1108-1113, 2019.

K. *119, H. Zhou, H. Liu, S. Shu, D. Xiao et al., A comprehensive study on the reductive amination of 5-hydroxymethylfurfural into 2, 5-bisaminomethylfuran over Raney Ni through DFT calculations, Wei and coll. reported the reductive amination of furfural and HMF to BAMF under benign conditions over Raney Ni (61% yield at 160°C from HMF), vol.11, pp.2649-2656, 2019.

G. *124, J. Shen, Y. Shi, Z. Lei, B. Chen et al., Aqueous Carbonylation of Furfural Derived 5-Bromofuroic Acid to 2, 5-Furandicarboxylic Acid with Supported Palladium Catalyst, Ind. Eng. Chem. Res, vol.58, pp.22951-22957, 2019.

Y. *127, X. Peng, T. Li, T. Gao, W. Li et al., Besides HMF, the direct transformation of starch also provides levulinic acid (LA) in 22% yield as the main side product, Green Chem, vol.21, pp.4169-4177, 2019.

A. *131, L. S. Ledoux, E. Kuigwa, B. Framery, and . Andrioletti, ) process: no additive, no-solvent, catalyst-free route to a biobased methylpyrrolidone in one step from levulinic acid and easy isolation by distillation, Green Chem, vol.17, pp.3251-3254, 2015.

C. *133, J. Xie, H. Song, Y. Wu, H. Hu et al., Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts, p.33

, Song and co-workers develop novel catalysts to produce various N-substituted-pyrrolidones from LA, thus widening the scope of possible derivatives of LA, on Porous TiO2 Nanosheets, vol.141, pp.4002-4009, 2019.

*. , F. J. Holzhäuser, J. B. Mensah, and R. Palkovits, The review highlights the fascinating potential of both Kolbe and (Non-) Kolbe electrochemical processes for the transformation of biomass, Green Chem, vol.22, pp.286-301, 2020.