M. P. Edgar, Principles and prospects for single-pixel imaging, Nature Photonics, vol.13, issue.1, pp.13-20, 2019.

M. F. Duarte, Single-pixel imaging via compressive sampling, Signal Processing Magazine, IEEE, vol.25, issue.2, pp.83-91, 2008.

V. Studer, Compressive fluorescence microscopy for biological and hyperspectral imaging, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.1679-1687, 2012.

F. Rousset, Time-resolved multispectral imaging based on an adaptive single-pixel camera, Opt. Express, vol.26, issue.8, pp.10550-10558, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01764280

E. Aguénounon, Single snapshot imaging of optical properties using a single-pixel camera: a simulation study, Journal of Biomedical Optics, vol.24, issue.7, pp.1-6, 2019.

R. Yao, Net-flics: fast quantitative widefield fluorescence lifetime imaging with compressed sensing -a deep learning approach, Light: Science & Applications, vol.8, issue.1, p.26, 2019.

S. Arridge, Solving inverse problems using data-driven models, Acta Numerica, vol.28, pp.1-174, 2019.

M. T. Mccann, Convolutional neural networks for inverse problems in imaging: A review, IEEE Signal Processing Magazine, vol.34, issue.6, pp.85-95, 2017.

E. Kang, Cycle-consistent adversarial denoising network for multiphase coronary CT angiography, Medical Physics, vol.46, issue.2, pp.550-562, 2018.

H. K. Aggarwal, Modl: Model-based deep learning architecture for inverse problems, IEEE Transactions on Medical Imaging, vol.38, issue.2, pp.394-405, 2019.

H. Gupta, Cnn-based projected gradient descent for consistent ct image reconstruction, IEEE Transactions on Medical Imaging, vol.37, issue.6, pp.1440-1453, 2018.

J. A. Fessler, Space-alternating generalized expectation-maximization algorithm, IEEE Transactions on Signal Processing, vol.42, issue.10, pp.2664-2677, 1994.

M. Ochoa, Assessing patterns for compressive fluorescence lifetime imaging, Opt. Lett, vol.43, issue.18, pp.4370-4373, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01922724

A. Foi, Practical poissonian-gaussian noise modeling and fitting for single-image raw-data, IEEE Transactions on Image Processing, vol.17, issue.10, pp.1737-1754, 2008.

. Antonio-lorente-mur, Handling negative patterns for fast single-pixel lifetime imaging, SPIE Photonics : Molecular-Guided Surgery: Molecules, Devices, and Applications V, vol.10862, 2019.

G. Ongie, Deep learning techniques for inverse problems in imaging, IEEE Journal on Selected Areas in Information Theory, vol.1, issue.1, pp.39-56, 2020.

J. Zhou, A bayesian map-em algorithm for pet image reconstruction using wavelet transform, IEEE Transactions on Nuclear Science, vol.54, issue.5, pp.1660-1669, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00184255

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, 2005.

. Antonio-lorente-mur, A Deep Network for Reconstructing Images from Undersampled Poisson data, 2020.

O. Ronneberger, U-net: Convolutional networks for biomedical image segmentation, CoRR, 2015.

K. Huang, Introduction to statistical physics, 2001.

A. Coates, An analysis of single-layer networks in unsupervised feature learning, Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.215-223, 2011.

A. Paszke, Pytorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems, vol.32, pp.8024-8035, 2019.

N. Ducros, A completion network for reconstruction from compressed acquisition, 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp.619-623, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02342766