Y. Ashida, K. Arashiba, K. Nakajima, and Y. Nishibayashi, Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water, Nature, vol.568, issue.7753, pp.536-540, 2019.

Y. Bicer, I. Dincer, C. Zamfirescu, G. Vezina, and F. Raso, Comparative life cycle assessment of various ammonia production methods, Journal of Cleaner Production, vol.135, pp.1379-1395, 2016.

J. E. Broadwell, W. J. Dahm, and M. G. Mungal, Blowout of turbulent diffusion flames, Symposium (International) on Combustion, vol.20, issue.1, pp.303-310, 1985.

J. Buckmaster, Edge-flames, Progress in Energy and Combustion Science, vol.28, issue.5, pp.435-475, 2002.

B. Chul, S. Ho, B. C. Choi, C. , and S. H. , Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air, Combust. Flame, p.1481, 2012.

S. H. Chung, Stabilization, propagation and instability of tribrachial triple flames, Proceedings of the Combustion Institute, vol.31, issue.1, pp.877-892, 2007.

S. Colson, Y. Hirano, A. Hayakawa, T. Kudo, H. Kobayashi et al., Experimental and Numerical Study of NH3/CH4 Counterflow Premixed and Non-premixed Flames for Various NH3 Mixing Ratios, Combustion Science and Technology, vol.1, pp.1-18, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02990369

H. Eickhoff, B. Lenze, and W. Leuckel, Experimental investigation on the stabilization mechanism of jet diffusion flames, Symposium (International) on Combustion, vol.20, issue.1, pp.311-318, 1985.

J. I. Erete, K. J. Hughes, L. Ma, M. Fairweather, M. Pourkashanian et al., Effect of CO2 dilution on the structure and emissions from turbulent, non-premixed methane?air jet flames, Journal of the Energy Institute, vol.90, issue.2, pp.191-200, 2017.

S. R. Gollahalli, Ö. Sava?, R. F. Huang, and J. L. Rodriquez-azara, Structure of attached and lifted gas jet flames in hysteresis region, Symposium (International) on Combustion, vol.21, issue.1, pp.1463-1471, 1988.

D. Grand, C. H. Le-brun, R. Vidil, and F. Wagner, Electricity production by intermittent renewable sources: a synthesis of French and German studies, The European Physical Journal Plus, vol.131, issue.9, p.1, 2016.

D. Han and M. G. Mungal, Observations on the transition from flame liftoff to flame blowout, Proceedings of the Combustion Institute, vol.28, issue.1, pp.537-543, 2000.

X. Han, Z. Wang, M. Costa, Z. Sun, Y. He et al., Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combustion and Flame, vol.206, pp.214-226, 2019.

R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. Mohan-sankaran et al., Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system, Science Advances, vol.5, issue.1, p.eaat5778, 2019.

A. Hayakawa, Y. Arakawa, R. Mimoto, K. D. Somarathne, T. Kudo et al., Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, International Journal of Hydrogen Energy, vol.42, issue.19, pp.14010-14018, 2017.

A. Hayakawa, T. Goto, R. Mimoto, T. Kudo, and H. Kobayashi, NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures, Mechanical Engineering Journal, vol.2, issue.1, p.14-00402-14-00402, 2015.

A. Ichikawa, Y. Naito, A. Hayakawa, T. Kudo, and H. Kobayashi, Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure, International Journal of Hydrogen Energy, vol.44, issue.13, pp.6991-6999, 2019.

G. T. Kalghatgi, Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air, Combust. Sci. Technol, vol.41, p.17, 1983.

H. Kobayashi, A. Hayakawa, K. D. Somarathne, and E. C. Okafor, Science and technology of ammonia combustion, Proceedings of the Combustion Institute, vol.37, issue.1, pp.109-133, 2019.

O. Kurata, N. Iki, T. Inoue, T. Matsunuma, T. Tsujimura et al., Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation, Proceedings of the Combustion Institute, vol.37, issue.4, pp.4587-4595, 2019.

S. Lamige, Analyse de l'Influence des Conditions aux Limites Thermiques sur la Stabilisation des Flammes Non-Prémélangées, 2014.

S. Lamige, K. M. Lyons, C. Galizzi, F. André, M. Kühni et al., Burner lip temperature and stabilization of a non-premixed jet flame, Experimental Thermal and Fluid Science, vol.56, pp.45-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00949212

S. Lamige, J. Min, C. Galizzi, F. André, F. Baillot et al., On preheating and dilution effects in non-premixed jet flame stabilization, Combustion and Flame, vol.160, issue.6, pp.1102-1111, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870465

C. K. Law, TRANSPORT PHENOMENA, Combustion Physics, pp.141-156

C. J. Lawn, Lifted flames on fuel jets in co-flowing air, Progress in Energy and Combustion Science, vol.35, issue.1, pp.1-30, 2009.

B. J. Lee, J. S. Kim, and S. H. Chung, Effect of dilution on the liftoff of non-premixed jet flames, Symposium (International) on Combustion, vol.25, issue.1, pp.1175-1181, 1994.

B. J. Lee and S. H. Chung, Stabilization of lifted tribrachial flames in a laminar nonpremixed jet, Combustion and Flame, vol.109, issue.1-2, pp.163-172, 1997.

T. Leung and I. Wierzba, The effect of co-flow stream velocity on turbulent non-premixed jet flame stability, Proceedings of the Combustion Institute, vol.32, issue.2, pp.1671-1678, 2009.

B. Li, Y. He, Z. Li, and A. A. Konnov, Measurements of NO concentration in NH3-doped CH4+air flames using saturated laser-induced fluorescence and probe sampling, Combustion and Flame, vol.160, issue.1, pp.40-46, 2013.

K. M. Lyons, Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments, Progress in Energy and Combustion Science, vol.33, issue.2, pp.211-231, 2007.

M. Marin and F. Baillot, Experimental study of the lifting characteristics of the leading-edge of an attached non-premixed jet-flame: Air-side or fuel-side dilution, Combustion and Flame, vol.171, pp.264-280, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01611244

, Le registre européen des émissions de polluants : le cas des installations d?incinération de déchets non dangereux. Étude des émissions de pollutants dans l?air et dans l?eau, Techniques Sciences Méthodes, issue.7/8, pp.39-52, 2007.

J. Min and F. Baillot, Experimental investigation of the flame extinction processes of nonpremixed methane flames inside an air coflow diluted with CO2, N2, or Ar, Combustion and Flame, vol.159, issue.12, pp.3502-3517, 2012.

J. Min, F. Baillot, H. Guo, E. Domingues, M. Talbaut et al., Impact of CO2, N2 or Ar diluted in air on the length and lifting behavior of a laminar diffusion flame, Proceedings of the Combustion Institute, vol.33, issue.1, pp.1071-1078, 2011.

L. Muñiz and M. G. Mungal, Instantaneous flame-stabilization velocities in lifted-jet diffusion flames, Combustion and Flame, vol.111, issue.1-2, pp.16-31, 1997.

Y. Nada, K. Matsumoto, and S. Noda, Liftoff heights of turbulent non-premixed flames in co-flows diluted by CO2/N2, Combustion and Flame, vol.161, issue.11, pp.2890-2903, 2014.

E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo et al., Experimental and numerical study of the laminar burning velocity of CH4?NH3?air premixed flames, Combustion and Flame, vol.187, pp.185-198, 2018.

E. C. Okafor, K. D. Somarathne, A. Hayakawa, T. Kudo, O. Kurata et al., Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine, Proceedings of the Combustion Institute, vol.37, issue.4, pp.4597-4606, 2019.

Y. Otakeyama, T. Yokomori, and M. Mizomoto, Stability of CH4?N2/air jet diffusion flame for various burner rim thicknesses, Proceedings of the Combustion Institute, vol.32, issue.1, pp.1091-1097, 2009.

A. Sánchez and M. Martín, Optimal renewable production of ammonia from water and air, Journal of Cleaner Production, vol.178, pp.325-342, 2018.

H. Schlichting, Boundary Layer Theory 7th ed, 1979.

D. A. Scholefield and J. E. Garside, The structure and stability of diffusion flames, Symposium on Combustion and Flame, and Explosion Phenomena, vol.3, issue.1, pp.102-110, 1948.

N. Sullivan, A. Jensen, P. Glarborg, M. S. Day, J. F. Grcar et al., Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames, Combustion and Flame, vol.131, issue.3, pp.285-298, 2002.

F. Takahashi, M. Mizomoto, and S. Ikai, Transition from laminar to turbulent free jet diffusion flames, Combustion and Flame, vol.48, pp.85-95, 1982.

F. Takahashi and W. J. Schmoll, Lifting criteria of jet diffusion flames, Symposium (International) on Combustion, vol.23, issue.1, pp.677-683, 1991.

S. D. Terry and K. M. Lyons, Turbulent Lifted Flames in the Hysteresis Regime and the Effects of Coflow, Journal of Energy Resources Technology, vol.128, issue.4, pp.319-324, 2006.

A. Valera-medina, H. Xiao, M. Owen-jones, W. I. David, and P. J. Bowen, Ammonia for power, Progress in Energy and Combustion Science, vol.69, pp.63-102, 2018.

M. Woo, B. C. Choi, and A. F. Ghoniem, Experimental and numerical studies on NOx emission characteristics in laminar non-premixed jet flames of ammonia-containing methane fuel with oxygen/nitrogen oxidizer, Energy, vol.114, pp.961-972, 2016.

Y. Wu, I. S. Al-rahbi, Y. Lu, and G. T. Kalghatgi, The stability of turbulent hydrogen jet flames with carbon dioxide and propane addition, Fuel, vol.86, issue.12-13, pp.1840-1848, 2007.

A. Wyzgolik and F. Baillot, Response of the non-premixed lifted flame to coaxial jet mixing layers, Proceedings of the Combustion Institute, vol.31, issue.1, pp.1583-1590, 2007.

M. Zieba, A. Brink, A. Schuster, M. Hupa, and G. Scheffknecht, Ammonia chemistry in a flameless jet, Combustion and Flame, vol.156, issue.10, pp.1950-1956, 2009.