P. Adler, L. J. Frey, A. Berger, C. J. Bolten, C. E. Hansen et al., The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions, Applied and Environmental Microbiology, vol.80, issue.15, pp.4702-4716, 2014.

P. Adler, L. J. Frey, A. Berger, C. J. Bolten, C. E. Hansen et al., The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions, Applied and Environmental Microbiology, vol.80, issue.15, pp.4702-4716, 2014.

X. Bing, J. Gerlach, G. Loeb, and N. Buchon, Nutrient-Dependent Impact of Microbes onDrosophila suzukiiDevelopment, mBio, vol.9, issue.2, pp.2199-2216, 2018.

L. V. Blanton, M. R. Charbonneau, T. Salih, M. J. Barratt, S. Venkatesh et al., Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children, Science, vol.351, issue.6275, pp.aad3311-aad3311, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439088

M. Carvalho, J. L. Sampaio, W. Palm, M. Brankatschk, S. Eaton et al., Effects of diet and development on the Drosophila lipidome, Molecular Systems Biology, vol.8, issue.1, p.600, 2012.

J. A. Chandler, J. Morgan-lang, S. Bhatnagar, J. A. Eisen, and A. Kopp, Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host?Microbe Model System, PLoS Genetics, vol.7, issue.9, p.e1002272, 2011.

J. Consuegra, T. Grenier, P. Baa-puyoulet, I. Rahioui, H. Akherraz et al., Commensal bacteria differentially shape the nutritional requirements of Drosophila during juvenile growth, 2019.

J. Consuegra, T. Grenier, P. Baa-puyoulet, I. Rahioui, H. Akherraz et al., Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth, PLOS Biology, vol.18, issue.3, p.e3000681, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02919023

T. Eisenberg, H. Knauer, A. Schauer, S. Büttner, C. Ruckenstuhl et al., Induction of autophagy by spermidine promotes longevity, Nature Cell Biology, vol.11, issue.11, pp.1305-1314, 2009.

S. Enya, C. Yamamoto, H. Mizuno, T. Esaki, H. Lin et al., Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During the Larval Development in Drosophila, Genetics, vol.207, p.genetics.300391.2017, 2017.

D. Fast, K. Petkau, M. Ferguson, M. Shin, A. Galenza et al., Vibrio cholerae-Symbiont Interactions Inhibit Intestinal Repair in Drosophila, Cell Reports, vol.30, issue.4, pp.1088-1100.e5, 2020.

T. Ferain, J. N. Hobbs, J. Richardson, N. Bernard, D. Garmyn et al., Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum., Journal of bacteriology, vol.178, issue.18, pp.5431-5437, 1996.

C. N. Fischer, E. P. Trautman, J. M. Crawford, E. V. Stabb, J. Handelsman et al., Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior, eLife, vol.6, p.18855, 2017.

H. J. Forman, H. Zhang, and A. Rinna, Glutathione: Overview of its protective roles, measurement, and biosynthesis, Molecular Aspects of Medicine, vol.30, issue.1-2, pp.1-12, 2009.

A. L. Gould, V. Zhang, L. Lamberti, E. W. Jones, B. Obadia et al., Microbiome interactions shape host fitness, Proc. Natl. Acad. Sci. U S A, vol.115, pp.11951-11960, 2018.

M. S. Goyal, S. Venkatesh, J. Milbrandt, J. I. Gordon, and M. E. Raichle, Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development, Proceedings of the National Academy of Sciences, vol.112, issue.46, pp.14105-14112, 2015.

T. Jang and K. P. Lee, Comparing the impacts of macronutrients on life-history traits in larval and adult Drosophila melanogaster: the use of nutritional geometry and chemically defined diets, The Journal of Experimental Biology, vol.221, issue.21, p.jeb181115, 2018.

L. Kamareddine, W. P. Robins, C. D. Berkey, J. J. Mekalanos, and P. I. Watnick, The Drosophila Immune Deficiency Pathway Modulates Enteroendocrine Function and Host Metabolism, Cell Metabolism, vol.28, issue.3, pp.449-462.e5, 2018.

E. S. Keebaugh, R. Yamada, B. Obadia, W. B. Ludington, and W. W. Ja, Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan, iScience, vol.4, pp.247-259, 2018.

E. S. Keebaugh, R. Yamada, and W. W. Ja, The Nutritional Environment Influences the Impact of Microbes on Drosophila melanogaster Life Span, mBio, vol.10, issue.4, pp.885-904, 2019.

R. Kraut, Roles of sphingolipids in Drosophila development and disease, Journal of Neurochemistry, vol.116, issue.5, pp.764-778, 2011.

, ERRATUM, Journal of Neurochemistry, vol.11, issue.10, pp.764-764, 1964.

R. Leitão-gonçalves, Z. Carvalho-santos, A. P. Francisco, G. T. Fioreze, M. Anjos et al., Commensal bacteria and essential amino acids control food choice behavior and reproduction, PLOS Biology, vol.15, issue.4, p.e2000862, 2017.

M. E. Martino, J. R. Bayjanov, B. E. Caffrey, M. Wels, P. Joncour et al., Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats, Environmental Microbiology, vol.18, issue.12, pp.4974-4989, 2016.

R. C. Matos, M. Schwarzer, H. Gervais, P. Courtin, P. Joncour et al., D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition, Nature Microbiology, vol.2, issue.12, pp.1635-1647, 2017.

M. E. Smith, Journal of Chemical Ecology, vol.26, issue.7, pp.1635-1647, 2000.

N. Minois, Molecular Basis of the ‘Anti-Aging' Effect of Spermidine and Other Natural Polyamines - A Mini-Review, Gerontology, vol.60, issue.4, pp.319-326, 2014.

N. Minois, D. Carmona-gutierrez, M. A. Bauer, P. Rockenfeller, T. Eisenberg et al., Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways, Cell Death & Disease, vol.3, issue.10, pp.e401-e401, 2012.

D. Mishra, N. Thorne, C. Miyamoto, C. Jagge, and H. Amrein, The taste of ribonucleosides: Novel macronutrients essential for larval growth are sensed by Drosophila gustatory receptor proteins, PLOS Biology, vol.16, issue.8, p.e2005570, 2018.

P. D. Newell and A. E. Douglas, , 2014.

P. D. Newell and A. E. Douglas, Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster, Applied and Environmental Microbiology, vol.80, issue.2, pp.788-796, 2013.

B. O. Oyeyinka and A. J. Afolayan, Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments, Plants, vol.8, issue.12, p.598, 2019.

I. S. Pais, R. S. Valente, M. Sporniak, and L. Teixeira, Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria, PLOS Biology, vol.16, issue.7, p.e2005710, 2018.

M. D. Piper, G. A. Soultoukis, E. Blanc, A. Mesaros, S. L. Herbert et al., Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan, Cell Metabolism, vol.25, issue.3, pp.610-621, 2017.

E. W. Rapport, D. Stanley-samuelson, and R. H. Dadd, Ten generations ofDrosophila melanogaster reared axenically on a fatty acid-free holidic diet, Archives of Insect Biochemistry and Physiology, vol.1, issue.3, pp.243-250, 1983.

K. Sakurai, H. Arai, M. Ishii, and Y. Igarashi, Transcriptome response to different carbon sources in Acetobacter aceti, Microbiology, vol.157, issue.3, pp.899-910, 2011.

J. H. Sang, CIRCUMSTANCES AFFECTING THE NUTRITIONAL REQUIREMENTS OF DROSOPHILA MELANOGASTER, Annals of the New York Academy of Sciences, vol.77, issue.2, pp.352-365, 2006.

D. R. Sannino, A. J. Dobson, K. Edwards, E. R. Angert, and N. Buchon, TheDrosophila melanogasterGut Microbiota Provisions Thiamine to Its Host, mBio, vol.9, issue.2, pp.e00155-18, 2018.

B. O. Schroeder and F. Bäckhed, Signals from the gut microbiota to distant organs in physiology and disease, Nature Medicine, vol.22, issue.10, pp.1079-1089, 2016.

J. Schultz, P. S. Lawrence, and D. Newmeyer, Masthead, The Anatomical Record, vol.96, issue.4, pp.fmi-fmi, 1946.

M. Schwarzer, K. Makki, G. Storelli, I. Machuca-gayet, D. Srutkova et al., Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition, Science, vol.351, issue.6275, pp.854-857, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449138

S. C. Shin, S. Kim, H. You, B. Kim, A. C. Kim et al., Drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling, Science, vol.334, issue.6056, pp.670-674, 2011.

M. I. Smith, T. Yatsunenko, M. J. Manary, I. Trehan, R. Mkakosya et al., Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor, Science, vol.339, issue.6119, pp.548-554, 2013.

R. B. Sartor, Faculty Opinions recommendation of Gut microbiomes of Malawian twin pairs discordant for kwashiorkor., Science, vol.339, pp.548-554, 2015.

A. J. Sommer and P. D. Newell, Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on theDrosophila melanogasterHost, Applied and Environmental Microbiology, vol.85, issue.2, 2018.

, Editorial Board, Applied and Environmental Microbiology, vol.85, issue.18, pp.1882-1900, 2019.

G. Storelli, A. Defaye, B. Erkosar, P. Hols, J. Royet et al., Lactobacillus plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals through TOR-Dependent Nutrient Sensing, Cell Metabolism, vol.14, issue.3, pp.403-414, 2011.

S. Subramanian, S. Huq, T. Yatsunenko, R. Haque, M. Mahfuz et al., Persistent gut microbiota immaturity in malnourished Bangladeshi children, Nature, vol.510, pp.417-421, 2014.

J. Thissen, J. Ketelslegers, and L. E. Underwood, Nutritional Regulation of the Insulin-Like Growth Factors*, Endocrine Reviews, vol.15, issue.1, pp.80-101, 1994.

F. Ursini, M. Maiorino, and H. J. Forman, Redox homeostasis: The Golden Mean of healthy living, Redox Biology, vol.8, pp.205-215, 2016.

. Erkosar, Supplementary file 1. Drosophila melanogaster stocks used in experiments.

, Figure 1?figure supplement 4. Wild-type flies fed protein-rich food display SPET comparably to those fed sucrose-based food., p.4

, Figure 5. Drugs targeting both PBPs and LDTs kill mycobacteria more rapidly when combined (A, B).

H. Complete and . Piper, Briefly, sucrose, agar, amino acids with low solubility (Ile, Leu and Tyr) as well as stock solutions of metal ions and cholesterol were combined in an autoclavable bottle with milli-Q water up to the desired volume, minus the volume of solutions to be added after autoclaving. After autoclaving at 120°C for 15 min, the solution was allowed to cool down at room temperature to ~60 °C. Acetic acid buffer and stock solutions for the essential and non-essential amino acids, vitamins, 2017.

. Consuegra, Tubes used to pour the HD were sterilized under UV for 20 min. HD was stored at 4°C until use, for no longer than one week. Banana diet was prepared with 200 mL of mixed banana, 300 mL of water and 3.5 g of agar. After autoclaving at 120°C for 15 min, 10 mL of diet were poured into UV-sterilized tubes. Banana diet was stored at 4°C and used the next day. Bacterial strains and growth conditions Strains used, 3C) were prepared following the same recipe excluding the nutrient of interest (named HDDX, X being the nutrient omitted) as described in, 2020.

M. Ml-of and . Broth, ) at a final concentration of 50 µg/mL. CFU counts were performed for all strains on MRS agar (Carl Roth, Germany). For selective isolation of Acetobacter or Lactobacillus during cocultures or bi-association, MRS plates were supplemented with ampiciline (10 µg/mL) or kanamycin (50 µg/mL), respectively. Appropriated dilutions were plated using the Easyspiral automatic plater (Intersciences, Saint Nom, France). The MRS agar plates were then incubated for 24-48h at 30°C for Acetobacter strains or 37°C for Lactobacillus

J. Consuegra, T. Grenier, P. Baa-puyoulet, I. Rahioui, H. Akherraz et al., Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth, Plos Biol, vol.18, p.3000681, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02919023

B. Erkosar, B. Combe, A. Defaye, N. Bozonnet, D. Puthier et al., Drosophila microbiota modulates host metabolic gene expression via IMD/NF-?B signaling, PLos ONE, vol.9, p.94729, 2014.

B. Erkosar, G. Storelli, M. Mitchell, L. Bozonnet, N. Bozonnet et al., Pathogen Virulence Impedes Mutualist-Mediated Enhancement of Host Juvenile Growth via Inhibition of Protein Digestion, Cell Host & Microbe, vol.18, issue.4, pp.445-455, 2015.

R. C. Matos, M. Schwarzer, H. Gervais, P. Courtin, P. Joncour et al., D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition, Nature Microbiology, vol.2, issue.12, pp.1635-1647, 2017.

M. D. Piper, G. A. Soultoukis, E. Blanc, A. Mesaros, S. L. Herbert et al., Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan, Cell Metabolism, vol.25, issue.3, pp.610-621, 2017.