Electromagnetic radiation from sinusoidal currents
C. Thevenet

To cite this version:
C. Thevenet. Electromagnetic radiation from sinusoidal currents. LYCEN 9909. 1999. <in2p3-00007599>

HAL Id: in2p3-00007599
http://hal.in2p3.fr/in2p3-00007599
Submitted on 2 Mar 1999

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Electromagnetic radiation from sinusoidal currents
C. Thévenet
Institut de Physique Nucléaire de Lyon, IN2P3/CNRS, Université Claude-Bernard,
F-69622 Villeurbanne Cedex, France

Abstract
We study the electromagnetic field radiated by high frequency electric currents in infinite conducting cylinders, with longitudinal or solenoidal flows. We show that the behavior of the radiated fields is very different for radiofrequencies and for higher frequencies. When $\frac{a}{\lambda}$ is large (where a is the cylinder radius), the radiated power varies very rapidly as a function of the frequency and is almost zero for certain values.

1 Current in conducting materials

We consider a homogenous, isotropic, conducting medium, and assume that its permittivity ε, its permeability μ are independent of the frequency. Its conductivity σ is real and is also independent of the frequency if $f \leq 10^{11} \text{Hz}$ \cite{1}. In the medium, the Maxwell equations are:

$$\begin{aligned}
\begin{cases}
\text{div} \vec{E} &= \frac{\rho_f}{\varepsilon} \\
\text{curl} \vec{E} &= -\frac{\partial \vec{B}}{\partial t}
\end{cases}
\begin{cases}
\text{div} \vec{B} &= 0 \\
\text{curl} \vec{B} &= \mu \vec{j} + \varepsilon \mu \frac{\partial \vec{E}}{\partial t}
\end{cases}
\end{aligned}$$

(1)

where ρ_f is the charge density and \vec{j} the current density.

The current density is proportional to the electric field $\vec{j} = \sigma \vec{E}$, so the charge conservation $\text{div} \vec{j} + \frac{\partial \rho_f}{\partial t} = 0$ gives $\frac{\partial \rho_f}{\partial t} = -\sigma \rho_f/\varepsilon$, and for a steady current $\rho_f = 0$ and $\text{div} \vec{j} = 0$, everywhere in the conductor.

For a sinusoidal current of frequency $f = \frac{\omega}{2\pi}$, if the complex electric field is $\vec{E}(\vec{r}, t) = \vec{E}(\vec{r}) e^{i\omega t}$ we can write

$$\nabla^2 \vec{E}(\vec{r}) = i \mu \sigma \omega \vec{E}(\vec{r}) - \omega^2 \varepsilon \mu \vec{E}(\vec{r})$$

(2)

In the right-hand side of equation (2), the second term (displacement current) is very small compared to the first one (conduction current) even for high frequencies, for instance, in copper $\sigma \approx 5.8 \times 10^7 \text{ (\Omega m)^{-1}}$, the ratio $\omega \sigma/\varepsilon$ is approximately $10^{-18} f$, we can neglect the second term for all frequencies, ranging from 60 Hz to microwaves (10^{11}Hz). In a good conductor the current density obeys the law

$$\nabla^2 \vec{j} = i \mu \sigma \omega \vec{j}$$

(3)

2 The infinite wire

We first consider an infinite cylindrical wire of radius a, with a sinusoidal volume current circulating in the axis direction, and independent of the z coordinate.
In cylindrical coordinates, \(\mathbf{J} = j(\rho) \exp(i\omega t) \mathbf{e}_z \) satisfies the equation

\[
\frac{d^2 j(\rho)}{d\rho^2} + \frac{1}{\rho} \frac{dj(\rho)}{d\rho} = i\mu_0 \omega j(\rho)
\]

(4)

The general solution is

\[
j(\rho) = C J_0 \left(\frac{1-i}{\delta} \rho \right) + D N_0 \left(\frac{1-i}{\delta} \rho \right)
\]

(5)

\(J_0 \) and \(N_0 \) are Bessel functions. If the current \(j \) is finite at \(\rho = 0 \), then \(D = 0 \)

\[
j(\rho) = C J_0 \left(\frac{1-i}{\delta} \rho \right) \quad \text{where} \quad \delta = \sqrt{\frac{2}{\omega \mu_0}} \quad \text{istheskindepth}
\]

(6)

In copper \(\delta \sim \frac{6.610^{-2}}{\sqrt{\mu}} \) m, \(\delta \) varies from \(10^{-2} \) m for a 50 Hz current to \(10^{-7} \) m for microwaves.

\(C \) is related to \(I \), the total current amplitude through a section of the wire.

\[
C = \frac{I}{2\pi} \frac{1-i}{a\delta} J_1 \left(\frac{1}{\delta} a \right)
\]

(7)

At any point \(M \), outside the wire, the scalar potential is zero, and the retarded vector potential\(^2\) is

\[
\vec{A}(r,t) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(t-u/r, \rho) \rho}{u} \, d\tau
\]

(8)

where \(r \) is the wire volume and \(u = PM, P \) is a point inside the wire with cylindrical coordinates \(\rho, \theta, z \), and \(r \) is the distance between \(M \) and the wire axis.

\[
u = \sqrt{z^2 + R^2} = \sqrt{z^2 + r^2 + \rho^2 - 2r\rho \cos \theta}
\]

(see Fig.1)

As the wire is infinite, the vector potential is independent of the \(z \) coordinate of \(M, M \) can be placed at \(z = 0 \)

\[
\vec{A}(r,t) = \mathbf{e}_z \frac{\mu_0}{\pi} \int_0^a \rho j(\rho) \, d\rho \int_0^\pi \cos \theta \, d\theta \int_0^\infty \frac{e^{-iu}}{u} \, dz
\]

(9)

The \(z \) integral can be evaluated exactly\(^3\) and gives \(-\frac{i}{2} \mathbf{H}_0^{(2)} \left(\frac{\omega}{c} R \right) \) which can be expanded\(^4\) in Fourier series

\[
\mathbf{H}_0^{(2)} \left(\frac{\omega}{c} R \right) = J_0 \left(\frac{\omega}{c} \rho \right) \mathbf{H}_0^{(2)} \left(\frac{\omega}{c} r \right) + 2 \sum_{k=1}^{\infty} J_k \left(\frac{\omega}{c} \rho \right) \mathbf{H}_k^{(2)} \left(\frac{\omega}{c} r \right) \cos k\theta
\]

(10)

The \(\theta \) integral is zero except for the first term, so

\[
\vec{A}(r,t) = -i \mathbf{e}_z \frac{\mu_0}{2} \pi \omega \int_0^a \rho J_0 \left(\frac{\omega}{c} \rho \right) j(\rho) \, d\rho
\]

(11)

The \(\rho \) integral can also be evaluated exactly\(^5\)}
\[\int_0^a \rho J_0(\frac{\omega \rho}{c}) J_0\left(\frac{1-i}{\delta} \rho\right) d\rho = \frac{-\omega c}{a} J_1(\frac{\omega a}{c}) J_0\left(\frac{1-i}{\delta} a\right) + \frac{1-i}{\delta} a J_0(\frac{\omega a}{c}) J_1\left(\frac{1-i}{\delta} a\right) \]

\[\frac{1-i}{\delta} \left(\frac{1-i}{\delta}\right)^2 - \left(\frac{\omega}{c}\right)^2 \]

(12)

Since \(\left(\frac{\omega \delta}{c}\right)^2 \ll 1 \), as have seen in (3), we obtain

\[\vec{A}(r, t) = -i \vec{e}_z \frac{\mu_0}{4} I e^{i \omega t} H_0^{(2)}(\frac{\omega}{c} r) F(\alpha) \]

(13)

where \(F(\alpha) = J_0\left(\frac{\omega a}{c}\right) - \frac{1-i}{2} \frac{\omega}{c} \delta J_1\left(\frac{\omega a}{c}\right) \frac{J_0\left(\frac{1-i}{\delta} a\right)}{J_1\left(\frac{1-i}{\delta} a\right)} \)

It is easy now to evaluate the fields \(\vec{E} \) and \(\vec{B} \) and the energy radiated by the wire.

\[\vec{E} = -\frac{\partial \vec{A}}{\partial t} = -i \frac{\mu_0}{4} I \omega e^{i \omega t} H_0^{(2)}(\frac{\omega}{c} r) F(\alpha) \vec{e}_z \]

\[\vec{B} = \text{curl} \vec{A} = -\frac{\partial \vec{A}}{\partial r} e_\phi = -i \frac{\mu_0}{4} I \frac{\omega}{c} e^{i \omega t} H_1^{(2)}(\frac{\omega}{c} r) F(\alpha) e_\phi \]

(14)

The energy per unit time passing out through a cylinder of unit length is \((6) \)

\[\mathcal{P} = \frac{\mu_0}{8} \omega |F(\alpha)|^2 \]

(15)

- For radiofrequencies and below, the second term of \(F(\alpha) \) is negligible, and as \(a \ll \lambda \), \(F(\alpha) \sim J_0\left(\frac{\omega a}{c}\right) \approx 1 \). The result \((7) \) obtained for infinitesimal wires holds also for wires of finite radius. (see Fig.2)

- For microwaves (see Fig.3), \(a \gg \delta \), the asymptotic expansions \((8) \) of Bessel functions yield \(J_1\left(\frac{1-i}{\delta} a\right) = -i J_0\left(\frac{1-i}{\delta} a\right) \)

\[F(\alpha) = J_0\left(\frac{\omega a}{c}\right) + \frac{1-i}{2} \frac{\omega}{c} \delta J_1\left(\frac{\omega a}{c}\right) \]

(16)

When \(\omega a/c \) reaches a zero of \(J_0 \), \(F(\alpha) \) is reduced to the second term which is very small \((\omega \delta/c \sim 10^{-4} \text{ for } f = 10^{10} \text{ Hz}) \), and is strictly zero for a perfect conductor \((\delta = 0) \). In this case, the fields are precisely zero everywhere outside the wire, as is shown for surface currents by Abbott and Griffiths \((7) \).

3 The infinite solenoid

We now assume that the sinusoidal current flows around the axis, in the volume of a conducting medium between two infinite cylinders of radii \(a \) and \(b \). (see Fig.4)
We can write \(J = j_0 \exp(i\omega t) \hat{e}_\theta \), \(j_0 \) depends only on \(\rho \) and is a solution of the equation

\[
\frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{dj_0(\rho)}{d\rho} \right) - \frac{j_0(\rho)}{\rho^2} = \frac{2i}{\sigma^2} j_0(\rho) \tag{17}
\]

The general solution is

\[
j_0(\rho) = C J_1 \left(\frac{1-i}{\delta} \rho \right) + D N_1 \left(\frac{1-i}{\delta} \rho \right) \tag{18}
\]

\(C \) and \(D \) can be determined with the two requirements:

- The \(H_z \) magnetic field component is continuous on either side of the outside surface \(H_z(b) = 0 \), in the conducting medium \(\vec{\mathcal{H}} = \frac{i}{\omega \mu} \text{curl} \vec{E} \), the \(z \)-component is

\[
H_z = -\frac{i}{\omega \mu \sigma} \frac{1}{d\rho} (\rho j_0) \text{ and we find}
\]

\[
C J_0 \left(\frac{1-i}{\delta} a \right) + D N_0 \left(\frac{1-i}{\delta} b \right) = 0 \tag{19}
\]

- The total current through a section of length unity (see fig.4) is \(I = \int_a^b j_0(\rho) d\rho \), then

\[
C J_0 \left(\frac{1-i}{\delta} a \right) + D N_0 \left(\frac{1-i}{\delta} b \right) = \frac{1-i}{\delta} I \tag{20}
\]

The current flowing in the solenoid becomes

\[
j_0(\rho) = I \frac{1-i}{\delta} N_0 \left(\frac{1-i}{\delta} b \right) J_1 \left(\frac{1-i}{\delta} \rho \right) - J_0 \left(\frac{1-i}{\delta} b \right) N_1 \left(\frac{1-i}{\delta} \rho \right) \tag{21}
\]

with \(\Delta(a,b) = N_0 \left(\frac{1-i}{\delta} b \right) J_0 \left(\frac{1-i}{\delta} a \right) - J_0 \left(\frac{1-i}{\delta} b \right) N_0 \left(\frac{1-i}{\delta} a \right) \)

The retarded vector potential due to this current is given by

\[
\vec{A}(r,t) = \frac{\mu_0}{4\pi} \int_\tau j_0(\rho) e^\frac{i\omega(t-u)}{c} \frac{e^{-i\frac{\omega t}{c} u}}{u} d\tau \tag{22}
\]

Since the geometry is cylindrically symmetric, we may choose \(M \) on the \(x \) axis, \(\vec{A} \) has only a component in the \(y \) direction:

\[
A_y(t) = \frac{\mu_0}{\pi} e^{i\omega t} \int_a^b \rho j_0(\rho) d\rho \int_0^\pi \cos \theta d\theta \int_0^\infty e^{-i\frac{\omega}{c} u} u \int_0^\infty dz \tag{23}
\]

The \(z \) integral is the same as in the preceding case, but now the contribution to the \(\theta \) integral in the expansion (10) is due to the term \(k = 1 \)

\[
A_y(t) = -i\mu_0 \frac{\pi}{2} e^{i\omega t} H_1^{(2)} \left(\omega \right) \int_a^b J_1 \left(\frac{\omega}{c} \rho \right) \rho j_0(\rho) d\rho \tag{24}
\]
The \(\rho\) integral is again evaluated exactly \(^{(5)}\)

\[
A_\rho(r,t) = K(r,t) F(a,b)
\]

(25)

where \(K(r,t) = \frac{i\pi}{2\mu_0 I c} e^{i\omega t} H_1^{(2)} \left(\frac{\omega}{c} r\right)\) dependson \(r\) and \(t\), and

\[
F(a,b) = \frac{a J_1(\frac{\omega}{c} a)}{1 + i \frac{\omega a}{\delta}} - \frac{\omega a}{\delta} \frac{1}{\Delta(\alpha,b)} \left[J_0(\frac{\omega}{c} a)X(a,b) - J_0(\frac{\omega}{c} b)\right] \quad \text{(26)}
\]

is a factor depending only on the system geometry and frequency.

\[
X(a,b) = N_0 \left(\frac{1 - i b}{\delta}\right) J_1 \left(\frac{1 - i a}{\delta}\right) - J_0 \left(\frac{1 - i b}{\delta}\right) N_1 \left(\frac{1 - i a}{\delta}\right)
\]

The expressions for the fields are

\[
\begin{align*}
\vec{E} &= \frac{\pi}{2\mu_0 I} \omega e^{i\omega t} H_0^{(2)} \left(\frac{\omega}{c} r\right) F(a,b) \varepsilon_0 \\
\vec{B} &= -i \frac{\pi}{2\mu_0 I} \frac{\omega}{r} e^{i\omega t} H_0^{(2)} \left(\frac{\omega}{c} r\right) F(a,b) \vec{e}_z
\end{align*}
\]

(27)

The time-averaged power dissipated is now

\[
\mathcal{P} = \frac{\hbar q}{2} T^2 \pi^2 \omega |F(a,b)|^2
\]

(28)

If \(b \neq a\), \(\Delta\) is not zero, since the current is finite everywhere in the solenoid, and we see immediately that \(F(a,b) = 0\) if \(\frac{\omega a}{\delta}\) is a root of \(J_1\) and \(\delta = 0\) (surface currents\(^{(7)}\)), whatever is the value of \(b\).

For radii of a few centimeters, \(b > a \gg \delta\), and to the first order in \(1/z = (1 - i)\delta/a\) or \((1 - i)\delta/b\), the asymptotic Bessel functions\(^{(8)}\) expansion yields:

\[
\begin{align*}
\Delta(a,b) &= \frac{1 + i}{\pi} \frac{\delta}{\sqrt{ab}} \sin\left(\frac{1 - i}{\delta}(b - a)\right) \\
X(a,b) &= \frac{1 + i}{\pi} \frac{\delta}{\sqrt{ab}} \cos\left(\frac{1 - i}{\delta}(b - a)\right)
\end{align*}
\]

(29)

We find easily

\[
F(a,b) = a J_1(\frac{\omega}{c} a) - \frac{1 + i \frac{\omega a}{\delta}}{2 \frac{c}{\delta}} \left(i \sinh 2x + \sin 2x\right) J_0(\frac{\omega}{c} a) - 2 \frac{\frac{b}{a}}{\delta} (\cosh x \sin x + i \sin x \cos x) J_0(\frac{\omega}{c} b)
\]

(30)

where \(x = \frac{b - a}{\delta}\)

For a given value of \(a\), \(|F(a,b)|^2\) has the shape shown in Fig.5 for \(f = 10^4\) Hz.

If \(b - a \ll \delta\), the second term in \(F(a,b)\) is of the first order in \(x\) and

\[
F(a,b) = a J_1(\frac{\omega}{c} a) + \frac{\omega}{c} a \frac{b - a}{\delta} J_0(\frac{\omega}{c} b) + \frac{\omega}{c} a \frac{b - a}{\delta} J_0(\frac{\omega}{c} a)
\]

(31)
As \(b - a \) increases towards \(2\delta \), the radiated power increases slightly, it becomes constant for larger values of \(b \):

\[
|F(a,b)|^2 = \left(aJ_1\left(\frac{\omega}{c}a\right)\right)^2 + a^2\frac{\omega}{c}J_1\left(\frac{\omega}{c}a\right)J_0\left(\frac{\omega}{c}a\right)
\]

(32)

Let us now examine the variation of (31) with frequency (see Figs.6 and Figs.7) \(F(a,b) \) is almost zero for \(f \leq 10^7 \) Hz, then it increases and has a peaked maximum near \(\frac{\omega a}{c} = 1.8 \) (if \(a = 0.1 \) m, \(f \sim 10^8 \) Hz). For higher frequencies, \(F(a,b) \) oscillates and is zero when \(\frac{\omega a}{c} \) is a root of \(J_1 \).

4 Conclusion

Longitudinal and solenoidal sinusoidal currents flowing in infinite cylinders radiate very differently depending on whether their frequency is below \(f_c = \frac{c}{2\pi a} \) or above (where \(a \) is the radius of the longitudinal wire and the inner radius of the solenoid).

We see that for a fixed current the power radiated increases as the frequency. Below \(f_c \), the coefficient of \(\mu_0 f^2 \) is independent of \(f \), above \(f_c \) it oscillates and is practically zero when \(\frac{\omega a}{c} \) is a root of \(J_0 \) for a longitudinal flow and a root of \(J_1 \) for a solenoidal one.

Aknowledgement

I am indebted to Gérard Smadja for calling my attention to this problem and I thank him for useful discussions. I thank the referee for his careful work, criticism and illuminating comments, which helped to improve the first draft of this work.

2. Ref.1, p.392
4. Ref.2, Sec.8.531.2
5. Ref.2, Sec.5.54.1
6. Ref.2, Sec.8.405.2 and Sec.8.477.1
8. Ref.2, Sec.8.451
$|F(a)|^2$ for copper, when $a = 0.01 \text{ m}$ and f is varying from 100 to 10^{12} Hz

$|F(a)|^2$ for copper, when $a = 0.01 \text{ m}$ and f is varying from 10^9 to 10^{11} Hz
\[|F(a,b)|^2 / |F_0|^2 \]

vs \(x = (b-a)/\delta \)

Fig. 5

\[|F(a,b)|^2 / |F_0|^2 \] versus \(x \) for copper, when \(a = 0.1 \text{m} \) and \(f = 10^4 \text{Hz} \) (\(F_0 \) is the value of \(F(a,b) \) if \(b = a \))

\[|F(a,b)|^2 / a^2 \]

vs \(\log f \)

Fig. 6

\[|F(a,b)|^2 / |F_0|^2 \] when \(a = 0.1 \text{m} \) and \(f \) is varying from 100 to \(10^{12} \text{Hz} \)
$|F(a,b)|^2/a^2$ vs $10^{-8} f$

$|F(a,b)|^2/|F_0|^2$ when $a = 0.1 \text{m}$ and f is varying from 10^8 to 10^{10} Hz