Skip to Main content Skip to Navigation
Theses

Application of Lorentz Force in Ultrasound-electromagnetic-field-coupled Electrical Impedance Tomography and Elastography

Abstract : The first part of the thesis studies the scanning electric conductivity gradients with ultrasonically induced Lorentz force (SECG-UILF). To reduce the instantaneous stimulation power to the transmitting transducer and at the same time the peak acoustic pressure from the transducer, this thesis proposes to apply the linearly frequency-modulated ultrasound pulse excitation or the sinusoidal step-frequency ultrasound pulse excitation in SECG-UILF. For the scanning electric conductivity gradients with linearly frequency-modulated ultrasound-induced Lorentz force (SECG-LFM-UILF), electrical signal of peak instantaneous power of 39.54 dBm is used to excite the transmitting transducer, which is 25.5 dB lower than the peak instantaneous power of the negative high-voltage narrow pulse (65.05 dBm) adopted in traditional SECG-UILF; and at the same time, the peak transmitting acoustic pressure in SECG-LFM-UILF is 0.44 MPa lower than that in traditional SECG-UILF. Experiments of SECG-LFM-UILF are done using multi-shaped saline agar phantoms of conductivity ranging from 0.2 S/m to 0.5 S/m, which show that: (1) the SECG-LFM-UILF can detect precisely the longitudinal distance of the electric conductivity gradients; (2) the signal-to-noise ratio of the reconstructed B-scan images of the electrical conductivity gradient distribution by the SECG-LFM-UILF are comparable to that obtained through the traditional SECG-UILF; and (3) using modulation frequency bandwidth of 2 MHz and modulation duration of 500 μs, a longitudinal resolution of 1 mm is achieved. For the scanning electric conductivity gradients with step-frequency ultrasound induced Lorentz force (SECG-SF-UILF), the in-phase demodulation scheme is simpler in hardware implementation than the IQ demodulation scheme but can only detect half of the longitudinal range. Experiments of SECG-SF-UILF are done on a sample of two-layer copper foil, which demonstrate that, using a frequency bandwidth of 2 MHz and 64 discrete frequencies, the longitudinal range of the sample can be detected precisely. The second part of the thesis studies the cross-correlation approach based elastography. To expand the frequency bandwidth of the shear wave displacement field so as to improve the quality of the shear wave velocity map, this part studies application of the Lorentz force for generation of shear wave fields. First, generation of shear wave sources on the soft medium surface through the mechanism of the Lorentz force is investigated by stimulating a non-ferromagnetic conductive ring or patch with a transient magnetic field. The origin and the frequency and amplitude characteristics of the Lorentz force acting on the conductive ring are confirmed by the displacement measurement using an interferometric laser probe. Under a transient magnetic field of changing rate of 10.44 kTs-1, the patch generates a shear wave field source of amplitude of 100 μm at the surface of the sample of polyvinyl alcohol (PVA) phantom. The shear wave fields created and propagating in the PVA phantom by experiments agree qualitatively well with the theoretical shear wave fields calculated through the analytical Green function solution. Then, the potential of the generated shear wave fields for the cross-correlation based shear wave velocity reconstruction is explored. Based on the cross-correlation approach, the qualitative shear wave velocity maps are reconstructed from 100 frames of the displacement fields, from which the interfaces or boundaries between regions of different stiffness can be clearly recognized, which are completely concealed in the ultrasound images
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-03018104
Contributor : Abes Star :  Contact
Submitted on : Sunday, November 22, 2020 - 1:05:07 AM
Last modification on : Monday, November 30, 2020 - 8:36:52 AM

File

TH2019SUNZHISHEN.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03018104, version 1

Collections

Citation

Zhishen Sun. Application of Lorentz Force in Ultrasound-electromagnetic-field-coupled Electrical Impedance Tomography and Elastography. Medical Physics [physics.med-ph]. Université de Lyon; University of Chinese academy of sciences, 2019. English. ⟨NNT : 2019LYSE1261⟩. ⟨tel-03018104⟩

Share

Metrics

Record views

128

Files downloads

6